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Abstract—Gait analysis involves analyzing data from body-

mounted sensors in order to detect various ailments or aging. 

Prior work has utilized the accelerometers on Smartphones to 

collect gait data but required subjects to firmly attach the phones 

to their torsos, hip or other body parts.  In real life, subjects 

prefer to place their phones in various pockets or bags, may wear 

loose or tight clothes which have been found to affect the quality 

of the accelerometer data gathered. In this paper, we report on 

factorial experiments to investigate what naturalistic factors 

affect accelerometer data gathered from unattached 

Smartphones. For a female subject, we found that the most 

impactful factor was wearing hard vs soft shoes. For a male 

subject, the most impactful factor was whether the phone was 

carried in an attaché case or not. Overall, we also found that 

none of the factors investigated produced an overwhelming 

response, which suggests that high-fidelity health assessments of 

various ailments could possibly be performed using gait data 

gathered in naturalistic settings (no need to attach smartphone 

precisely on subjects). 

Keywords—gait analysis, smartphone, naturalistic factors, 

factorial experiment. 

I. INTRODUCTION 

Major cerebral impairments, severe musculoskeletal 

disorders and aging can impact human gait especially while 

walking [10]. Walk tests are widely used as standard medical 

measures to assess major chronic ailments such as Chronic 

Obstructive Pulmonary Disease (COPD) and Congestive Heart 

Failure (CHF) [11]. For example, the 6-minute walk test 

requires the subject to walk for 6 mins back and forth over a 

measured distance. Gait analysis involves processing data 

from body-worn sensors in order to determine any gait 

characteristics and identify abnormalities [4]. Recently, gait 

analysis has utilized data gathered from the accelerometer of a 

user’s smartphone while they were walking.   

Much of the prior work typically required the subjects to 

firmly attach their smartphones to their bodies (e.g. on the 

lower back or torso). For instance, using this methodology, 

Cheng et al [11] estimated gait speed with a 94% accuracy 

using data gathered from accelerometers of smartphones 

attached to the subject’s lower backs.  However, in real life, 

subjects prefer to place their phones in various pockets or 

bags, or may wear loose or tight clothes that introduce noise 

into accelerometer data gathered [16]. These naturalistic 

factors make accurate gait analysis challenging.   

In this paper, we report on brief experiments to investigate 

statistically significant naturalistic factors that influence the 

gait data gathered from a Smartphone’s accelerometer. The 

factors we considered included the incline of the walking 

surface, placement of phone on the body, loose vs tight fitting 

clothing, shoe type and whether the phone was carried in an 

attache case (bag) (See figure 1). Due to the potentially large 

number of permutations of influencing factors and 

interactions, we utilized a factorial experimental design. 

 

Figure 1 - Experimental Factors that could affect Gait inference 

Factorial experimental design is a statistical method that is 

useful for estimating the effects of (and importance of) various 

factors on an experimental outcome. It is particularly useful 

for noisy data [9]. Compared to brute force exhaustive testing 

(one-factor investigations), factorial experiments also enable 

the investigation of interactions between experimental factors 

at reduced experimental costs.  

Our Findings: We found that the most impactful experimental 

factor for our female subject was the hard versus soft soled 

shoes. The most impactful experimental factor for our male 

subject was whether the phone was in an attaché or not. We 

also found that none of the factors investigated produced an 

overwhelming response, which suggests that high-fidelity 

health assessments of various ailments could possibly be done 

using gait dat gathered from smartphones in naturalistic 

settings (no need to attach smartphone precisely on subjects). 

II. GAIT DATA COLLECTION 

To gather gait data from a smartphone’s accelerometer, we 

developed an app that leveraged Funf [13]. Funf is a third-

party Android library that allows data from selected 

smartphone sensor(s) to be recorded at a chosen sampling rate 

and automatically transferred to a remote location for analysis. 
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III. GAIT DATA PRE-PROCESSING AND FEATURE EXTRACTION 

Pre-processing raw accelerometer readings: First, to 

normalize the accelerometer readings for different phone 

orientations and positions in which the phone was carried  

(phone in different pockets or bags), the gravity-corrected 

magnitude of groups of n accelerometer readings was 

calculated using equation 1:  

 

        (1) 

 

Data smoothing to reduce effects of noise: Smartphone 

accelerometer data have lots of noise. To make the signal 

more stable, we calculated a moving average for a window 

size of 10 seconds (about 2000 accelerometer observations).     

A. Gait Feature Extraction 

A gait feature is a property that can be calculated from the 

phone’s raw accelerometer data [5]. Human walking is a 

periodic motion. Hence, in addition to time domain features, 

some frequency domain features were also useful [2].  

 

1) Time domain features: We explored time domain gait 

features that had been useful in prior work on gait. The 

number of steps taken per time window [2] can be calculated 

by finding the number of local maxima of the gravity-

corrected magnitude of the accelerometer signals that exceed 

one standard deviation from the signal’s mean [6]. Figure 4 

shows example accelerometer data with the steps highlighted. 

Table 1 lists the time-domain features we explored. 

 
Figure 4 - Example Data with Number of Steps Highlighted 

Frequency Domain Features: To convert the raw 

accelerometer data to the frequency domain, we applied the 

Discrete Fourier Transform (DFT). A one-sided Power Sectral 

Density (PSD) of a signal describes how the variance of data 

in the time domain is distributed over its frequency 

components.  We calculated the one-sided PSD of the 

accelerometer data using Welch's overlapped segment 

averaging estimator algorithm, illustrated in Figure 6. From 

the PSD, we can gather where the energy of the signal is 

distributed in relation to its frequency. The highest peak in the 

figure is the fundamental frequency of the signal, which is 

about 1-5Hz for the activity of walking [2].  

TABLE 1 – TIME DOMAIN GAIT FEATURES EXPLORED 

Time Domain Feature Definition 

Number of Steps [2] 
The number of steps taken in a given 

time interval 

Average Step Length 

[3] 

Average in the distance covered by 

each step 

Average Step Time [3] 
Average in the time covered by each 

step 

Gait Velocity [2] 
Ratio of the total distance covered by 

the total time 

Cadence [2] 
Ratio of the total number of steps by 

the total time 

Skewness [2] Asymmetry of the signal distribution 

Kurtosis [2] 
“Peakedness” of the distribution and 

the heaviness of its tail 

 

. 
Figure 6  - PSD of Example Data Using Welch Algorithm 

The frequency domain features of the signal that we 

extracted for gait classification were 1) the average power of 

the signal, 2) the ratio of high to low energy peaks of the PSD, 

3) the signal to noise ratio of the signal, and 4) the total 

harmonic distortion of the signal. These features were selected 

these based on their effectiveness in prior research involving 

passive gait verification [2]. Table 2 summarizes the 

frequency domain features we extracted and their definitions. 

TABLE 2 – FREQUENCY DOMAIN GAIT FEATURES EXPLORED 

Frequency Domain 

Feature 
Definition 

Average Power [2] The variance per unit time 

Ratio of Spectral 

Peaks [2] 

Ratio of the energies of low and high 

frequency bands 

SNR 
Power of whole signal / power of its 

computed noise 

THD 
Distortion of the whole signal compared 

to its harmonics 

IV. FACTORIAL EXPERIMENT DESIGN 

We performed a factorial experiment to investigate some 

everyday factors that influence gait attributes while a subject 

is carrying their phone naturally during normal human 

walking. Other activities, such as running, jogging, jumping 

and climbing stairs were not considered for the experiment. 

There were different covariates and experimental factors used 
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for this experiment. Since covariates are subject-specific, they 

cannot be altered during the experiment and cannot be 

considered experimental factors. The experimental factors that 

we tested, which have been shown to impact gait are listed in 

Table 3 and illustrated in figure 1. 

TABLE 3 – EXPERIMENTAL FACTORS INVESTIGATED 

Factor and 

Representation 
Levels Description 

Surface Incline 

(A) 

Incline approximately 5% grade 

Decline approximately -5% grade 

Body Placement 
of Phone (B) 

Front of body Front pocket 

Back of body Back pocket 

Material (C) 
Loose Gym shorts, sweatpants 

Tight Jeans, dress pants 

Shoe Type (D) 

Hard 
Dress shoes, high heels, hard tennis 

shoes 

Soft 
Slippers, Dr. Scholls inserts, soft 

tennis shoes 

In Attaché 

(ABCD) 

Yes Phone in purse or briefcase 

No Phone not in purse or briefcase 

 

Two participants (1 male weighing 280 pounds and 1 female 

weighing 155 pounds) were selected for this experiment. A 

brute force testing of the effects of all factors individually 

would have resulted in an extremely large number of trial runs 

(over 25). Therefore, we chose a factorial experimental design 

instead. Using a Resolution V one-half replication of a  

design, we confounded the interaction of factors ABCD with 

E to reduce the trial runs by half and only considered 

 trial runs for the fractional factorial design. In 

order to gather enough data to determine the impact of 

measurement error on our results, we repeated these 16 runs 3 

times each in a randomized order. We performed these 48 runs 

using an indoor ramp of approximately 5% incline to assess 

the varying factor’s impact on gait. Table 4 below lists the 

trials performed in the factorial experiment. For each trial run, 

we collected time-series accelerometer data in the x, y, and z 

directions from the subject’s smartphone. The data were 

streamed to a web server for further analysis using MATLAB. 

During each trial run, one of the experimental factors in Table 

1 was varied and the subject walked in a straight line for 15 

seconds while data was being gathered.  

TABLE 4 – LIST OF TRIAL RUNS 

 
Surface 

Incline 

Body 

Placement 

Mate

rial 

Shoe 

Type 

In 

Attaché 

Trial 1 Decline Back Tight Hard Yes 

Trial 2 Incline Front Tight Hard Yes 

Trial 3 Decline Front Tight Hard No 

Trial 4 Incline Back Tight Hard No 

Trial 5 Decline Back Tight Soft No 

Trial 6 Incline Front Tight Soft No 

Trial 7 Decline Front Tight Soft Yes 

Trial 8 Incline Back Tight Soft Yes 

Trial 9 Decline Back Loose Soft Yes 

Trial 10 Incline Front Loose Soft Yes 

Trial 11 Decline Front Loose Soft No 

Trial 12 Incline Back Loose Soft No 

Trial 13 Decline Back Loose Hard No 

Trial 14 Incline Front Loose Hard No 

Trial 15 Decline Front Loose Hard Yes 

Trial 16 Incline Back Loose Hard Yes 

V. RESULTS AND ANALYSIS 

Since different factors were expressed differently in different 

subjects, the data was analyzed on a per-subject basis. For 

example, subject 1 used an in attaché of a small purse and 

hard shoes of high heels while subject 2 used an in attaché of a 

large briefcase and hard shoes of work boots. The time and 

frequency domain features listed in tables 2 and 3 were then 

calculated from the raw accelerometer data. Analysis 

consisted of a simple linear regression performed on each 

feature. In addition to the experimental factors A, B, C, D, and 

E, all possible interactions of the factors (AB, AC, AD, BCD, 

BC, BD, ACD, CD, ABD, ABC) were also considered. The 

regression model took the form of equation 3.  

 
Equation 3 - Gait Feature Regression Model Equation 

Table 6 shows our estimated coefficients and test results. The 

estimate column is a calculation representing about how much 

impact a factor or interaction of factors had on the response 

(or feature). The Standard Error (or SE) is “the standard 

deviation of the sampling distribution of a statistic” [15]. The 

test statistic (or tStat), is used to determine the probability of 

obtaining a certain result randomly from a certain population 

[8]. A p-value is the probability of obtaining the observed 

results when the null hypothesis is true [16]. For this 

experiment, the null hypothesis was that there would be no 

correlation between gait and the varying factors. P-values of < 

0.05 were considered statistically significant for each factor or 

interaction of factors. Based on the p-values in the above 

example, the only factor to have an impact on this particular 

model for this particular feature of gait was D, hard versus soft 

shoes. Table 6 denotes all factors for all gait features 

determined to be statistically significant at the p < 0.05 level 

(denoted by *) and p < 0.01 level (denoted by **). Figure 11 is 

a plot of the linear best fit line for the response data, along 

with its 95% confidence intervals: 

 
Figure 11 - Female Number of Steps Regression Model Plot 

Since this experiment involved multiple repetitions, there was 

also a calculation of the variation of each feature between 
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subjects and the within variation of each feature measured in 

the experiment. The between variation is a measure of the 

variation between similar trial runs with different subjects. 

The within variation is a measure of the variation between 

observations of each trial run within a specific set of 

experiment parameters.  

TABLE 6 – TABLE OF STATISTICALLY SIGNIFICANT 

EXPERIMENTAL FACTORS FROM REGRESSION 

Feature Factor Estimate SE tStat p-value 

No. of Steps –male D 5.4583 1.571

5 
3.4733 0.00149

68** No of Steps –male E -4.3542 1.571

5 
-2.7707 0.00923

79** Step Length –

Female 

D 23.372 6.310

3 
3.7036 0.00079

897** CE -14.445 6.310
6 

-2.2891 0.02882
1* Step Length –Male E -19.237 6.399 -3.0063 0.00511

22** 
Step Time – 

Female 

D 16.642 5.360

6 
3.1046 0.00396

98** AE -13.177 5.360
6 

-2.4582 0.01956
1* CE -14.346 5.360

6 
-2.6762 0.01164

1* Step Time –Male E -16.16 7.689

3 
-2.1017 0.04354

5* 

Average Power  
– Female 

E -2697.5 205.3  -

13.139 

1.9367e-

14** A -584.76 205.3 -2.8483 0.00761

89** B 518.39 205.3 2.525 0.01672

2* C -635.4 205.3 -3.095 0.00406

98** D 422.7 205.3 2.0589 0.04771

7* AD 726.08 205.3 3.5367 0.00126

09** AE 885.92 205.3 4.3153 0.00014

334** BC -657.49 205.3 -3.2026 0.00307

56** BE -492.74 205.3 -2.4001 0.02238

2* CE 910.96 205.3 4.4372 0.00010

11** 

Average Power – 

Male 

E -4256.3 473.4

9 
-8.9894 2.8735e-

10** A -2320.2 473.4

9 
-4.9003 2.6545e-

05** B 3542 473.4

9 
7.4806 1.6255e-

08** C -1579.2 473.4

9 
-3.3352 0.00216

73** BE -2014.5 473.4

9 
-4.2546 0.00017

042** Kurtosis –Female E -0.51935 0.162

36 
-3.1988 0.00310

62** 
Kurtosis –Male 

AD -0.44098 0.187

68 
-2.3496 0.02512

9* CE 0.44098 0.187

68 
2.3496 0.02512

9* 
Skewness –Female 

E -0.24938 0.049

629 
-5.0248 1.8489e-

05** AB 0.10551 0.049

629 
2.126 0.04131

1* 
Skewness – Male 

AD -0.15223 0.059

695 
-2.5502 0.01575

4* CE 0.24593 0.059

695 
4.1198 0.00024

986** 
In summary, the three features in the time-domain that 

produced statistically significant results under experimental 

conditions were 1) the number of steps taken, 2) the average 

step length, 3) and the average step time. The most impactful 

experimental factor for the female subject was the hard versus 

soft soled shoes (factor D). In each regression which returned 

results of a p-value less than 0.05, the factor that was involved 

was D. There were a few results where D and other factors (A, 

B, C) were interacting with each other; however, due to the 

Resolution V design confounding interactions of factors at the 

third level, the interaction of these other factors with D can be 

considered insignificant. By the hierarchy of significance, we 

are able to assume that the simplest explanation, D, is correct 

and had an impact on gait. Similarly, the most impactful 

experimental factor for the male subject was whether the 

phone was in attaché or not (factor E). Also, by the hierarchy 

of significance, we are able to assume that the factor ABCD, 

or E, was the simplest explanation on the impact of gait. 

Possibly the most exciting result here is that there was not an 

overwhelming response difference when factors were varied.  

VI. CONCLUSION 

Prior work has analyzed human gait data gathered from 

smartphone accelerometers to infer various health ailments. 

However, in most cases, the Smartphone was constrained to 

be affixed to a body part (hip or L3 region), which is not 

naturalistic. In this work, we utilized a factorial experiment to 

analyze the factors that affect human gait in naturalistic 

settings. We found that for our female subject, the most 

impactful factor was hard vs soft shoes. For the male subject, 

we found that the most impactful factor was whether the 

phone was in attaché or not. We were also able to verify that 

while significant, these factors did not affect gait analysis 

enough to invalidate results. 

In addition to the factors we investigated, several other factors 

that may affect human gait are not considered in this 

experiment. A user’s walk may change over time due to any 

number of circumstances including weather, phone placement, 

ground conditions or personal injury. A user’s gait may also 

change if they are fatigued or in a bad mood. Ultimately, 

gathering more data to cover majority of relevant situations 

and labeling any contributing factors should improve 

inference accuracy.    
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