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Abstract. The many-lights real time Global Illumination (GI) algo-
rithm is promising but requires many shadow maps to be generated for
Virtual Point Light (VPL) visibility tests, which reduces its efficiency.
Prior solutions restrict either the number or accuracy of shadow map
updates, which may lower the accuracy of indirect illumination or pre-
vent the rendering of fully dynamic scenes. In this paper, we propose
a hybrid real-time GI algorithm that utilizes an efficient Sparse Voxel
Octree (SVO) ray marching algorithm for visibility tests instead of the
shadow map generation step of the many-lights algorithm. Our technique
achieves high rendering fidelity at about 50 FPS, is highly scalable and
can support thousands of VPLs generated on the fly.

1 Introduction

Global illumination (GI) simulates the propagation of light through a 3D volume
and its interaction with surfaces, dramatically increasing the fidelity of computer
generated images. While offline GI algorithms such as ray tracing and radiosity
can generate physically accurate images, their rendering speeds are too slow for
real-time applications.

A new wave of GI algorithms targeting real-time applications such as video
games have recently emerged. One class of these approaches is based on the
many-lights method that is derived from Kellers instant radiosity technique [1].
The many-light method transforms solving the lighting transport equation into
the calculation of direct illumination from many virtual light sources. This algo-
rithm is hardware-friendly and can easily be implemented on modern GPUs. One
shortcoming of the many-lights algorithm is that it requires many shadow maps
to be generated for Virtual Point Light (VPL) visibility tests, which reduces the
its efficiency. While imperfect shadow maps [2] can alleviate this issue, they are
noticeably inaccurate for indirect shadows.

Another class of real-time GI methods discretize the original scene into voxels,
which has several advantages: First, voxels are geometry-independent and many
efficient scene voxelization methods have previously been proposed. Secondly,
ray-geometry intersection and visibility tests on voxel data structures are very
fast. Thirdly, high quality anti-aliasing techniques can also be implemented using
voxel data [3].
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Fig. 1. Sample results using our technique: Dynamic Cornell box scene with dragon
and running elephant rendered using two spot lights at 50 fps on an NVIDIA GeForce
Titan X GPU. Indirect illumination is generated by 512 one-bounce virtual point lights

Inspired by discussions in Ritschel et al. [4], in this paper we introduce a
hybrid real-time GI algorithm that combines the advantages of the many-lights
method with those of voxelization. We use an efficient Sparse Voxel Octree (SVO)
ray marching algorithm for visibility tests in place of the expensive shadow maps
generation step of the many-light method. Our technique achieves high fidelity
rendering quality at real time speeds (about 50FPS, shown in Fig. 1). Moreover,
our technique is highly scalable and can support thousands of VPLs generated
on the fly. Our main contributions are:

– An alternative real-time many-lights GI method that can support thousands
of VPLs generated dynamically.

– Sparse Voxel Octree (SVO)-based VPL visibility tests at interactive rates
without using computationally expensive shadow maps.

2 Related Work

Instant Radiosity Methods: Instant radiosity [1] uses many VPLs to approxi-
mate indirect illumination and several is the basis of many proposed real-time GI
methods. To achieve high performance, some earlier methods only gather near-
field VPLs, ignoring visibility tests [5]. Others such as Laine et al. [6] restrict
movement in parts of the scenes in order to reuse VPL shadow maps over mul-
tiple frames. Ritschel et al. [2] efficiently generate inaccurate VPL shadow maps
by using a point-based scene representation. Their method is very fast for one-
bounce indirect illumination, but consumes lots of GPU memory bandwidth for
second and third bounce VPLs. Knecht [7] exploits a temporal coherence tech-
nique to alleviate a flickering issue that occurs in real-time instant radiosity when
there is an insufficient number of VPLs.

The distribution of VPLs within the 3D scene also affects the rendering
quality of instant radiosity methods. Poor one-bounce VPL sampling leads to
artifacts and unshaded scene surfaces [8]. To construct robust light transport
paths, Tokuyoshi et al. [9] changed the VPL sampling strategy to bidirectional
path tracing. Their algorithm uses global ray-bundles [10], which are groups of
parallel rays sampling the scene geometry. Their technique is implemented via a
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GPU-based per fragment concurrent link list [11]. However, global ray-bundles
introduce additional burdens, since every time a VPL is used, scene polygons
must be rasterized again in order to create a corresponding global ray-bundle.
Consequently, while their technique produces photorealistic images for complex
scenes, it does not run at high frame rates.

Voxel-based Methods: Voxel-based methods discretize the scene into 3D grid
cells (voxels). An outstanding feature of scene voxelization is that it generates an
approximation of scene geometric information extremely fast (usually less than
several milliseconds on current commodity GPUs for a scene with over a hun-
dred thousand triangles). Using this discretized scene representation, an iterative
diffusion process can be performed to transfer light energy between neighboring
grid cells [12]. Thiedemann et al. [13] introduces a regular grid-based voxelization
technique that supports fast near-field VPL visibility tests. However, voxeliza-
tion using regular grids consumes a lot of GPU memory. To solve this problem
and its artifacts related to instant radiosity methods, Crassin [3] develops a fast
dynamic GPU SVO generation method and uses it for high quality GI render-
ing: they utilize an injection and pre-filtering process to filter data related to
indirect illumination in a bottom-up fashion. The resulting hierarchical octree
structure is then used by their voxel cone tracing technique to produce high
quality indirect illumination that supports both diffuse and high glossy indirect
illumination.

3 Our Algorithm

Our lighting system is a deferred renderer, which supports illumination by mul-
tiple scene lights. First, we voxelize the scene and create an SVO to represent
geometric occlusion. Similar to other deferred rendering systems, we then create
a geometry buffer (G-buffer) [14] which stores position, normal and materials
information for direct and indirect illumination. The G-buffer is then split for
VPL interleaved sampling [15]. For each scene light we render the scene from the
lights view and create a reflective shadow map [5] into which we store position,
normal and flux information that is needed by VPL importance sampling [16].

Direct illumination is calculated using standard shadow maps and light con-
tributions of all scenes lights are accumulated into a direct illumination buffer.
Indirect illumination is calculated by accumulating contributions of VPLs into
an indirect illumination buffer. To accelerate indirect illumination, we adopt a
technique similar to Segovia [17]: each pixel being shaded is only assigned a
subset of the VPLs using a pre-generated interleaved sampling pattern. A visi-
bility test is performed by shooting shadow rays from the pixel toward the VPL
subset. Here, instead of performing shadow map lookup and comparison, we
perform SVO ray-marching to query if the shadow ray is occluded. To utilize
cache coherence of modern GPUs, we group pixels that use the same VPL subset
together by splitting the G-buffer into 4 × 4 tiles. On completion, the indirect
illumination buffer is merged, filtered and combined with the direct illumination
buffer to create the final image. Figure 2 shows our steps.
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Voxel Data Representation: We use SVO as a spatial data structure for fast VPL
visibility tests. Inspired by Crassin [3], we first build the SVO non-recursively
and store it in GPU memory. Later the SVO structure is read by multiple GPU
threads concurrently during VPL visibility tests. To exploit GPU thread-group
caches, groups of eight tree nodes are placed together.

Fig. 2. Lighting pipeline steps. Top left: Scene voxelization and SVO generation. Top
middle: G-buffer generation. World position, normal and diffuse materials rendered into
floating-point textures. Position and normal buffers are split for calculating indirect
illumination. Top right: RSM generated from scene lights view. First-bounce VPLs are
created by sampling the RSM. Bottom left: Direct illumination using scene lights and
corresponding shadow maps. Bottom middle: Indirect illumination calculated with split
G-buffer and SVO ray-marching. Merging and filtering are performed to produce the
final indirect illumination result. Bottom right: Adding direct and indirect illumination
together. A simple HDR tone mapping is applied to produce the final image.

3.1 VPL Visibility Tests Using Sparse Voxel Octree

We use SVO to perform shadow ray marching between each surface point being
shaded and the VPLs. To exploit data coherence, surface positions accessing the
same VPL subset are grouped together. We also assume that the surface material
only has a diffuse property for indirect illumination. This assumption leads to
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incoherent tree node access patterns due to the nature of diffuse reflection. Thus,
packet traversal [18] cannot be applied easily as grouping individual shadow rays
which have a uniform distribution over a hemisphere does not benefit much from
fetching the same nodes during ray marching. However, dividing shadow rays into
packets based on VPLs that reside in the same solid angle is a viable option to
improve node access coherence, which we will explore in future work. Currently
we only implement a per-ray traversal method. In Sect. 4, we will show that the
algorithm has a good performance for diffuse indirect illumination.

The kd-restart traversal algorithm is an efficient method for ray marching
thousands of rays concurrently on GPUs [19,20]. Consequently, we implement
an SVO-restart traversal algorithm for VPL visibility tests. We also selected a
kd-tree since it splits spatial regions in two as compared to the octree which splits
the space into eight parts, making packet traversal more efficient on kd-trees.
Our ray marching algorithm in pseudocode is shown in Fig. 3.

Fig. 3. Pseudocode for our ray marching algorithm

The ray marching algorithm takes world space ray end positions and SVO
root as input. It first transforms the ray end positions to SVO space. In line
2 the ray segment is shrunk slightly to avoid intersection issues because both
the shading position and VPL position are on geometry surfaces that have been
flagged as SVO leaf nodes. From line 3 to 7 we initialize some variables used by
the subsequent while loop. Here, sceneMaxT is the distance between the shrink
ray end positions. It is used as the ray marching termination condition when the
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ray goes through the leaf nodes. The hit variable indicates whether or not the
ray hits a leaf node which has geometric information in it. Since we use SVO ray
marching primarily for VPL visibility tests, whenever the ray hits geometry, the
algorithm terminates and returns immediately. If we were to implement glossy
reflection in future, this SVO-restart method could be extended easily to fetch
hit position geometric data. Lines 8 to 21 lists the main while loop. The idea
is similar to that of kd-restart algorithm: marching the ray through the leaf
nodes iteratively and checking if shadow ray occlusion occurs. The differences
here are (1) how we determine through which subdivided region we should keep
marching the ray and (2) how we clip the ray each time it intersects a subdivided
region. In our implementation we use the octree nodes AABB, which is easy and
efficient to be implemented on a GPU. The implementation on line 19 is based
on the ray-AABB intersection detection algorithm described in PBRT. In line
20 we update maxT using the result t1 from line 19, which is the maximum
t value of the intersection position with the current nodes AABB. To make
the algorithm numerically robust, we offset maxT using a user specified epsilon
value. Otherwise the ray may stop marching forward in the next iteration due
to inaccuracies caused by a floating point representation. Finally in line 21, the
result is returned indicating whether the ray passed the VPL visibility test.

3.2 Rendering

Since we replace the time-consuming VPL shadow map generation with a scene
voxelization pass, the GPUs main burden changes from performing hundreds or
thousands of scene drawing and rasterization operations to a one-time scene vox-
elization and subsequent shadow ray tests for indirect illumination. One impor-
tant advantage of our method is that implementing the quasi-random walk [1]
for n-bounce VPL distribution is much more straightforward than shadow maps
based real-time instant radiosity method. The reason is simple: since we already
have a voxelized scene representation, against which shooting rays is extremely
efficient. We just needed to extend our VPL sampling pass by adding second-
bounce VPL sampling from first-bounce VPLs sampled with reflective shadow
maps. In complex scenes such as the Crytek Sponza, second and third-bounce
VPLs are useful for illuminating the scenes complex geometry.

In our system, standard deferred shading with scene light shadow maps is
applied to produce a direct illumination buffer. For indirect illumination, we
accumulate all the VPLs that have influence on a shading fragment and store
the results in an indirect illumination buffer. Since we have split the G-buffer
into 4 × 4 tiles with an interleaved sampling pattern, all the fragments inside
the same tile use exactly the same subset of VPLs. In this way, data access
to VPLs and SVO nodes exhibits good locality, which in turn improves the
performance of shadow ray marching significantly. Similar to Dachsbacher et al.
[5], given a VPLs flux ΦV PL, world space position pV PL, world space normal
nV PL, shading surface points position p and normal n, the indirect illumination
at a surface position due to a VPL is formulated as follows:
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EV PL(p, n, pV PL, nV PL) = ΦV PLG(1 − V ) (1)

G =
max(0, cosθi)max(0, cosθo)

max(B, |p − pV PL|2) (2)

cosθi = dot(n,− p − pV PL

|p − pV PL| ) (3)

cosθo = dot(nV PL,
p − pV PL

|p − pV PL| ) (4)

We fetch the VPL related information from our VPL buffer, which has been
generated by the VPL sampling stage of the system. V is the visibility term
between the VPL and shading surface point. To evaluate V , we have to perform
a shadow ray test using our SVO structure. Note that for shadow maps based
instant radiosity method, evaluating V is just a simple shadow map lookup and
comparison. In our case, since the evaluation of V is time-consuming, we could
avoid a fruitless V term evaluation by first checking the luminance of the VPL
and the G term. If either the luminance of the VPL is too small or the G term
equals zero, we then skip accumulating this VPL to the indirect illumination
buffer. B is the bouncing singularity constant factor used to clamp the distance
between the VPL and the surface point. Since our technique currently only
handles diffuse lighting, once the indirect illumination is complete, the buffer is
merged and filtered for final combination with the direct illumination buffer.

4 Results

Our real-time global illumination method was rendered on an Intel i7 3930k CPU
with an NVIDIA GeForce Titan X GPU. We tested using two scenes: A Cornell
box with complex models (dragon and running elephant) and Crytek Sponza.
All scenes are fully dynamic and no preprocessing methods are required.

The time spent on critical stages of our system are summarized in Table 1.
The Cornell box scene is rendered at 768× 768 (1283 SVO) and Crytek Sponza
scene is rendered at 1280 × 720 (2563 SVO). The G-buffer, direct illumination
buffer and indirect illumination buffer all have the same resolution as the back-
buffer. For interleaved sampling of VPLs, the G-buffer is split into 4 × 4 tiles.
Therefore, the VPL set is divided into 16 subsets, each of which is assigned to
a G-buffer tile. The number of VPLs is varied and their influence on render-
ing speed and image quality is observed. Figure 4 shows the Cornell box scene
rendered with 512 and 2048 VPLs respectively. Note that the visual difference
between two settings is very small due to the accurate VPL visibility tests, which
makes the integration of incoming radiance from VPLs converge very quickly. We
also tested the Cornell box scene using a SVO resolution of 2563, but the visual
improvement is negligible. For Crytek Sponza scene, one-bounce indirect illumi-
nation is not enough to illuminate all the regions of the scene. Artifacts may
appear in regions where insufficient number of VPLs are accumulated. Figure 5
shows the rendering result of the sponza scene using 1024 and 2048 first-bounce
VPLs.
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Fig. 4. Fully dynamic Cornell box scene with dragon and running elephant (150k
triangles) rendered using two spot lights. SVO grid dimension is 1283. Top left: Final
image (512 first-bounce VPLs, 50 fps). Top right: Final image (2048 first-bounce VPLs,
15 fps). Bottom left: Indirect illumination (512 first-bounce VPLs, 50 fps). Bottom
right: Indirect illumination (2048 first-bounce VPLs, 15 fps)

Table 1. Detailed timings for the Cornell box (1283 SVO, 768 × 768 resolution, no
MSAA) and Crytek Sponza scene (2563 SVO, 1280 × 720 resolution, no MSAA) mea-
sured in milliseconds for critical stages of our lighting system. Three VPL number
settings are used: 512, 1024 and 2048.

Cornell box with dragon
and running elephant

Crytek Sponza

Scene Voxelization and SVO Generation 0.57 / 0.57 / 0.58 4.65 / 4.65 / 4.65

RSM rendering 0.46 / 0.46 / 0.46 0.61 / 0.62 / 0.62

VPL Generation 0.02 / 0.02 / 0.02 0.02 / 0.02 / 0.02

Direct Illumination 0.17 / 0.17 / 0.18 0.31 / 0.31 / 0.31

Indirect Illumination 16.0 / 33.0 / 69.0 19.5 / 36.2 / 73.0
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Fig. 5. Fully dynamic Crytek Sponza scene (180k triangles) rendered using one spot
light and 1024 first-bounce VPLs. SVO grid dimension is 2563. Top left: Final image
from camera position 1 (19 FPS). Top right: Final image from camera position 2 (20
FPS). Bottom: Final image from camera position 3 (23 FPS).

5 Conclusion and Future Work

We have presented an alternate method to perform VPL visibility tests for
instant radiosity-based real-time global illumination. While our method has a
fixed voxelization cost and is not as efficient as fast shadow maps for computing
one-bounce indirect illumination. However, for second- and third-bounce VPL
sampling our technique is promising especially for complex scenes while main-
taining real-time frame rates. Our method is automatic, supports fully dynamic
scenes, and requires no scene preprocessing.

Similar to other real-time instant radiosity techniques, our method inherits
limitations from instant radiosity. For instance, highly glossy surfaces cannot be
reconstructed without having adequate VPLs evenly distributed in the entire
scene. Meanwhile, applying interleaved sampling to scene surfaces not directly
illuminated exhibits noticeable artifacts if a shading surface point fetches VPLs,
most of which are blocked due to poor VPL distribution. To solve these issues,
as mentioned before, our next step is implementing a robust VPL distribution
and gathering method. We believe this can be done by taking advantage of the
SVO data structure, using it as a scene geometric data representation for n-
bounce VPL generation and rendering-time VPL acquisition. To support large
scale scenes, a cascaded SVO grid management scheme could be implemented
by following the idea of cascaded Light Propagation Volumes (LPV) [12] as well.
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