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Abstract
Objectives: Remote assessment of gait in patients’homeshas become a valuable tool formonitoring the
progressionof Parkinson’s disease (PD).However, thesemeasurements are oftennot as accurate or
reliable as clinical evaluations because it is challenging to objectively distinguish the unique gait
characteristics of PD.Weexplore the inferenceof patients’ stage of PD from their gait usingmachine
learning analyses of data gathered from their smartphone sensors. Specifically,we investigate supervised
machine learning (ML)models to classify the severity of themotor part of theUPDRS (MDS-UPDRS
2.10-2.13). Our goals are to facilitate remotemonitoring of PDpatients and to answer the following
questions: (1)What is the patient PD stage basedon their gait? (2)Which features are best for
understanding and classifyingPDgait severities? (3)WhichMLclassifier types best discriminatePD
patients fromhealthy controls (HC)? and (4)WhichMLclassifier types candiscriminate the severity of
PDgait anomalies?Methodology: Ourworkuses smartphone sensordata gathered from9520patients in
themPower study, ofwhom3101 participants uploaded gait recordings and 344 subjects and 471
controls uploaded at least 3walking activities.We selected 152PDpatientswhoperformed at least 3
recordings before and 3 recordings after takingmedications and 304HCwhoperformed at least 3
walking recordings. From the accelerometer and gyroscope sensor data,we extracted statistical, time,
wavelet and frequency domain features, and other lifestyle featureswere derived directly from
participants’ survey data.We conducted supervised classification experiments using 10-fold cross-
validation andmeasured themodel precision, accuracy, and area under the curve (AUC).Results: The
best classificationmodel, best feature, highest classification accuracy, andAUCwere (1) random
forest and entropy rate, 93%and0.97, respectively, forwalking balance (MDS-UPDRS-2.12);
(2) bagged trees andMinMaxDiff, 95%and0.92, respectively, for shaking/tremor (MDS-UPDRS-2.10);
(3) bagged trees and entropy rate, 98%and0.98, respectively, for freeze of gait; and (4) random forest and
MinMaxDiff, 95%and0.99, respectively, for distinguishingPDpatients fromHC.Conclusion:Machine
learning classificationwas challengingdue to theuse of data thatwere subjectively labeled basedon
patients’ answers to theMDS-UPDRS surveyquestions.However,withuse of a significantly larger
number of subjects than inpriorwork and clinically validated gait features, wewere able todemonstrate
that automatic patient classificationbasedon smartphone sensordata canbe used to objectively infer the
severity of PDand the extent of specific gait anomalies.

1. Introduction and background

Parkinson’s disease is a neurodegenerative diseasewith
a worldwide prevalence estimated at 16 million people
(Muangpaisan, Weerasak et al [1]). This number is

expected to double by 2050. PD symptoms include
tremor, rigidity, akinesia, and postural instability
(Jankovic 2008 [2]), as shown in figure 1. In general,
hospitalization is the largest component of PD health
system costs (69% of total costs) (Shalika et al [3]).
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Because the condition of PD patients mostly improves
at the early stages of the disease, it is important to
detect PD as early as possible and monitor its progres-
sion in the early stages. Since the number of PD
patients is increasing ([4] Kowal et al 2013), it is
essential to reduce patient dependency on care by
enabling them to perform PD assessment andmonitor
their progress at home ([5]Mera et al 2012).

Remote monitoring objectively informs the care
provider of each patient’s progress and how regularly
they take their medication, information that can be
used to make more accurate future treatment recom-
mendations. However, home self-assessment has its
own challenges and might not always generate reliable
results. The need for remote assessment in addition to
the boom in mobile health applications has led to
active research on methods for remote monitoring of
chronic diseases, including PD ([6]Kubota et al 2016).

As of January 2018, over 77% of adults in the Uni-
ted States own smartphones [7]. With this high adop-
tion rate, smartphones also contain sensors that can be
used in sensing the behavior and health of the smart-
phone user.Moreover, smartphones contain powerful
processors for analyzing sensor data and supply a
unique portable platform for mobile health applica-
tions. Researchers can conduct large-scale studies on
millions of participants with the use of smartphone
sensors to capture the fingerprint of the patient’s
unique behaviors. Smartphone sensing for healthcare
can facilitate remote follow-up and enable doctors to
fine-tune medication to meet each patient’s needs.
Several smartphone sensors have been demonstrated
to be useful in assessing the symptoms of PD, includ-
ing use of themicrophone for voice analysis, the accel-
erometer/gyroscope for gait assessment and screen
tapping for tremor/shaking evaluation ([8] Tsanas
et al 2010, [9] Bayestehtashk et al 2015, [10] Patel et al
2009, [11] Horak and Mancini 2013, [12] LeMoyne
et al 2013, [13] Kassavetis et al 2016). Mobile health
applications could play a key role in reducing

healthcare costs and the burden of PD on patients,
especially those living in remote areas.

The most popular rating scale for PD is the Move-
ment Disorder Society’s Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) ([14] Goetz et al 2008).
On this scale, PD anomalies are rated on a scale of zero
(normal) to four (severe PD). In this paper, we use the
MDS-UPDRS as our PD measure and focus on two
main goals to assess disease severity: (1) Identification
of the best gait features that can be used to analyze
MDS-UPDRS motor tests performed remotely, and
(2) identification of whichmachine learning classifica-
tion model best distinguishes the severity of PD
anomalies formotor aspects of theMDS-UPDRS.

2.Ourmain contributions

• A large sample size of patient data gathered in
natural/home settings: Although certain prior
studies have investigatedmachine learningmethods
for classifying PD characteristics, most were based
on a low number of participants or were conducted
in clinical environments that might not be reprodu-
cible by patients who are self-monitoring in their
homes. The studies were also inconclusive as to
which specific features yielded the best classification
results. Our study is based on a large number of
participants (152 PDpatients and 304HC).

• Comprehensive, clinically validated gait features:
Moreover, prior work did not explore selected gait
features that have previously been used in clinical
gait analysis and posturography, such as the sway
area. Table 1 compares prior PD gait studies based
on the number of subjects, aspect of PD analyzed,
type of device/sensor used in capturing the data,
and the location of the PD tests (home versus clinic).
For completeness, we have included prior PD work
that used other wearables such as smartwatches,
infrared cameras, and force plates. Our study is

Figure 1. Symptoms of Parkinson’s disease.
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Table 1. Summary of themost recent PDGAIT studies.

Author year

PDpatients

/controls Aspect of PD Device/Sensor Test location Limitation

[23]Mazilu, Sinziana et al 2012 10/0 FoG. Smartphone andwearable accelerometers Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[24]Tahir et al 2012 12/20 Recognize gait pattern of PD. Infrared camera/ force plate. Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[15]Bot et al 2016 5718/ 1087 Data collection Smartphone sensors Remote Did not combine gait as well as lifestyle features.

[25]Arora et al 2015 10/10 Voice, posture, gait,finger tapping,

and response time

Smartphone sensors Clinic and remote Small number of participants. Did not combine

gait as well as lifestyle features.

[26]Ellis et al 2015 12/12 Gait variability Smartphone accelerometer, gyroscope, and heel-

mounted footswitch sensors

Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[27]Printy et al 2014 26/0 Bradykinesia. Smartphone gyroscope, accelerometer, touch screen,

microphone, and front- camera

Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[28]Kim,Hanbyul et al 2015 15/0 FoG Smartphone gyroscope, accelerometer Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[29] Sharma, Vinod et al 2014 0/5 Facial tremors, speech, dyskinesia, gait

abnormalities

Smartphone/Smartwatch accelerometer, front cam-

era,microphone

Remote Small number of participants. Did not combine

gait as well as lifestyle features.

[16]Zhan, Andong et al 2016 121/105 Voice, balance, gait, dexterity, and

reaction time.

Smartphone/accelerometer, touch screen,mic. Remote Did not combine gait as well as lifestyle features.

[30] Lee, Chae Young et al 2016 57/87 Bradykinesia Smartphone/screen,mechanical tapper Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[13]Kassavetis, Panagiotis
et al

2016 14/0 Tremor, bradykinesia Smartphone/accelerometer, touch screen, Clinic Small number of participants. Did not combine

gait as well as lifestyle features.

[31]Memedi,Mevludin

et al

2013 95/10 Tremor, bradykinesia Touch-pad handheld computer Clinic and

Remote

Small number of participants. Did not combine

gait as well as lifestyle features.
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based on smartphone data gathered by PD patients
in their homes and investigates a comprehensive list
of gait features, including clinically validated sway
features.

• Combination of lifestyle and demographic fea-
tures with gait features: Our study combines user
demographics (age, gender) and lifestyle features
(smoking, recent history of exercise) with gait
features. All features are listed in table 2. Many
lifestyle features have been shown in the literature to
be predictive of PD status. Previous studies focused
on either a set of lifestyle features or a set of gait
features. Our selection of comprehensive gait fea-
tures in addition to selective lifestyle features is
novel. We believe that the novelty of feature
selection and specifically combining time, fre-
quency statistical features, sway area, and lifestyle
features lead to impressiveML prediction results for
a large set of participants.

• Machine learning classification of freeze of gait
(FoG), walking imbalance and shaking/tremors in
the same study: Our study classifies multiple PD
aspects, targeting the inference of 3 major modal-
ities of PD: (1) Freeze of gait (FoG), (2) walking
balance, and (3) shaking/tremors. FoG is a brief
episodic forward progression of the feet despite the
intention to walk. FoG is associated with falls and
negatively impacts patient quality of life. Walking
imbalance is the inability to achieve postural
equilibrium and orientation and includes decreased
arm swing, shuffling steps, increased postural sway,
and slow turning and often leads to falls. Shaking/
tremors is an involuntary quivering movement,
characteristically occurring at rest. The rhythmic
tremor of Parkinson’s disease typically starts in one
limb and can eventually affect both sides of the
body. The tremor is annoying and attracts attention,
and PD patients tend to keep their bad hand in a
pocket or sit on hands during meetings. We were
able to rank and highlight the most important
machine learning feature(s), which offers insights
that can be used in the classification of PD gait
modalities and identification of the best ML algo-
rithm for analyzing each gait modality and the one
that best discriminates HC from PD patients. We
compared various supervised machine learning
algorithms, which are explained in the methodol-
ogy, results, discussion, and conclusion sections.

• Crowdsourced smartphone sensor data: We use
smartphone sensor data gathered with a crowdsour-
cing methodology in the mPower study. Successful
classification of data crowdsourced from patients
could facilitate the population-level screening of PD
patients. However, PD data collected in the home
environment might be more heavily confounded by
noise andmore challenging to analyze.

Selected PD studies allowed participants to per-
form periodic assessment activities in their homes
over extended periods of time using mobile health
apps ([15] Bot et al 2016, [16] Zhan et al 2016). Accel-
erometer and gyroscope sensors have been demon-
strated as useful in assessing gait, tremor and walking
balance ([17] Abujrida et al). Those Previous studies
were able to quantify multiple gait modalities of PD,
including walking imbalance and FoG. Home capture
yielded an increased number of participants compared
with similar studies that were performed in clinics.
However, this method of collecting data has it is own
challenges ([6] Kubota et al 2016). Sources of error
include factors such as the variance of different devi-
ces/sensors used, the lack of expert proficiency in sub-
jects’ self-assessment of gait severities, variability of the
environment in which the assessment was performed,
and level of subject adherence to the smartphone app
instructions, which dramatically affects what subjects
record as an observation. These factors ultimately lead
to inconsistency in analyzing and classifying each
activity and increase themargin of prediction error.

Lifestyle features are often ignored when analyzing
PD gait. To the best of our knowledge, lifestyle features
have not been considered when assessing gait seve-
rities of PD using engineered sensor features. ([18]
Van et al) found that PD rapidly increased over the age
of 60 years, with only 4% of the cases under the age of
50 years. The rate for men (19.0 per 100 000, 95% CI:
16.1, 21.8) was 91% higher than that for women (9.9
per 100,000, 95% CI: 7.6, 12.2). Smoking reduced tre-
mor, rigidity, bradykinesia, and gait disturbance,
including frozen gait. These effects lasted for approxi-
mately 10–30 min after smoking a cigarette and
relieved PD symptoms in the off-medication period
([19] Ishikawa et al). Fertl ([20] Fertl et al) found a sig-
nificant reduction in physical activity during the
course of the disease, but no complete abandonment
of sports was observed. Swimming, hiking, and gym-
nastics were the favored sports. ([21] Reuter et al) con-
cluded that motor disability in PD patients can be
improved by intensive sports activities in the early to
medium stages of PD.

3.Methodology

3.1.Dataset
Data were acquired from the mPower study ([15] Bot
et al 2016), a clinical observational study on PD
conducted entirely through an iPhone (Apple Inc.,
Cuppertino CA, USA) app interface, figure 2 shows the
versions of the smartphone used in the study. The
mPower study interrogated aspects of movement dis-
order through surveys and continuous sensor-based
recordings from participants with and without Parkin-
son disease. The mPower study had a large enrollment
(n=9520) of participants who opted to share data
broadly and contributed at least twomeasurements. The
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Table 2. Features definitions and descriptions.

TimeDomain Features and their use cases for Gait analysis

S.N Feature Feature definition Description

1 Number of Steps Local Peaks The number of steps taken in a given time interval

2 Average Step Time
#

time

Steps
The average time elapsed for each step

3 Average Cadence #steps

time
The ratio of the total number of steps to the

total time

4 Skewnessa

⎡⎣ ⎤⎦
( )

( )
/

m

m

å -

å -

x

x

n i x

n i x

1 3

1 2 3 2

Asymmetry of the signal distribution

5 Coefficient of Variation

of Step Time

( )m

m

å -interval
n i interval

interval

1 2 Thewithin-subject standard deviation of the

stride interval divided by themean stride

interval

6 Average Step Length +
average Step Time

0.084
1.89 The average distance covered by each step

7 Gait Velocity ⎛
⎝⎜

⎞
⎠⎟+

averageStepTime

averageStepTime

0.084
1.89 The ratio of the total distance covered by the

total time

8 MinimumandMaximum

Differencea
( ) ( )-x xmax mini i Globalmaximumof one stepminus global

minimumof one step averaged over all

steps of one subject

9 RootMean Squarea å
n

x
1

i
2 RootMean Square or quadraticmean is a

statisticalmeasure

10 Entropy Ratea ( )-å ´possibility possibilitylogunique freq unique freq2 The uncertaintymeasure of the signal, and the

regularity of a signal when its anticipated that

consecutive data points are related

11 SwayAreab X.Y, Y.Z, X.Z ( )p AB Area of an ellipse that encloses the 95 percent

confidence interval of all observed gyroscope

points in theXY, YZ, andXZplanes. (A andB

are the lengths of the semi-major and

semi-minor axes of the ellipse)

FrequencyDomain Features and their use cases forGait analysis

12 Harmonic Ratioa å

å
= ¼

= ¼

V

V
i i

j j

1,3,5,

2,4,6,

Harmonic Ratio quantifies the harmonic

composition of the accelerations for a given

stride viaDFT

13 Average Powera total power of the signal

bandwidth of the signal
Themean of the total power underneath the

curve of the PSD estimate for a signal

14 The ratio of Spectral Peaka

(withWelch, FFT,DCT)

( )
( )
power

mean power

max freq

freq

The ratio of the energies of low and

high-frequency bands

15 SignalNoise Ratioa
power

power

signal

noise

Power of the whole signal over the power of its

computed noise

16 The energy in Band 0.5 to 3Hza ò psd dff3

0.5
The energy in a frequency band describes

components of distinct frequencies in the

signal, and the frequency range is

recommended as 0.5 Hz to 3 Hz

17 Windowed Energy in Band 0.5

to 3Hza
ò windowed psd dff3

0.5
The energy in the frequency band of

5-s windowswith an overlap of 2.5 s; windows

from the complete signal sequence are

averaged

18 Peak Frequencya ( )powermax f Themaximum spectral power

19 Spectral Centroida å ´

å

f power

power

f

f

2

2
The frequency that divides the spectral power

distribution into two equal parts

20 Bandwidtha ( )å - ´

å

f spectralCentroid power

power

f

f

2 2

2
The difference between the uppermost

and lowermost frequencies/range of

frequencies in the signal (WeightedAverage)

Wavelet Domain Features and their use cases for Gait analysis

21 Wavelet Bandwidtha

( )
¢

¢ + ¢
cA cA

cA cA cD cD

*

* *
The relative energy contribution in a

time-frequency band
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goal of the study was to help establish baseline variability
of real-world activity measurement collected via mobile
phones thatmight ultimately lead to quantificationof the

ebbs and flows of PD symptoms. The collected mPower
activities included 35410 walking, 78887 tapping, and
8569 memory records. Subjects conducted the PD tests

Table 2. (Continued.)

TimeDomain Features and their use cases for Gait analysis

S.N Feature Feature definition Description

22 Wavelet Entropy Ratea ( )-å ´possibility possibilitylogunique freq unique freq2 Wavelet entropy represents signal disorder in the

time-frequency domain

Statistical Features and their use cases forGait analysis

23 Zeroth-LagCross-Correlation

Coefficienta

( )( )

( ) ( )

m m

m m

å - -

å - å -

x y

x y

i x i y

i x i y
2 2

The agreement or similarity between 2 directional

acceleration signals

24 Kurtosisa

⎡
⎣⎢

⎤
⎦⎥

( )

( )

m

m

å -

å -

n
x

n
x

1

1

i x

i x

4

2
2

The extent towhich the distribution of signal

amplitudes lies predominantly on the left of the

mean amplitude

25 StandardDeviationa ( )må -
n

x
1

i x
2 Measure for signal spreading, defined as the

square of standard deviation

Lifestyle Features and their use cases forGait analysis

26 GELTQ.1a The number of times the participant performed

strenuous exercise formore than 15 min over

the past week.

27 GELTQ.1b The number of times the participant performed

moderate exercise formore than 15 min over

the past week.

28 GELTQ.1c The number of times the participant performed

minimal effort exercise formore than 15 min

over the past week.

29 Smoked Ever smoked? (True/false question).
30 Age Participant’s age (a number in years).
31 Years. Smoking Number of years participant has smoked (a

number)
32 Packs.per.day Number of packets smoked per day.

32 Gender Female/male

Table 2 shows the definition of features, where xi refers to a data sequence fromwhich the feature is to be calculated; mx refers to the average

of all x ;i intervali refers to a sequence of stride intervals; minterval refers to the average of all interval ;i Vi refers to the amplitude of odd ordered

harmonic frequency in the frequency domain, and Vj refers to that of even-ordered harmonic frequency; dwt refers to discrete wavelet

transform (approximation coefficients vector cA and detail coefficients vector cD).
a Features that are calculated for both accelerometer and gyroscope.
b Features that are calculated for gyroscope only.

Figure 2. Smartphone version andTime of walking.
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using an iPhone smartphone running the mPower data-
gathering application. Participants self-reported PD
severities and contributed activities several times during
the day, before/after taking medication and at another
time of the day, shown in figure 2. Not all participants
complied with the application protocol, and therefore
their number of recorded activates varied from a few to
hundreds of recordings. Approximately 658 PD patients
performed 24001 walks, and 2165 HC performed 10585
walking activities in the first 6months of the study. Only
815participants performedat least 3walking activities.

Participants also filled out surveys including a subset
of the UPDRS section 1 (non-motor experiences of daily
living) and section 2 (motor experiences of daily living).
Participants also completed a demographic survey,
which included information on their general health his-
tory, PD history, and general lifestyle questions. To per-
form thewalking activity, participantswere asked towalk
for 30 s in a straight line while placing the smartphone in
their pants front pocket (figure 3), stand for 30 s, and
subsequently turn and walk back for 30 s. The raw data
gathered included the smartphone’s gyroscope and
accelerometer data sampled at 100Hz, as well as ped-
ometer values and the time of the activity.Ourwork only
analyzes the outbound walking to enable uniform analy-
sis across patients and healthy controls (HC) by avoiding
FoG and walking imbalance events that usually occur
whenPDpatients attempt to start walking after they turn
between theoutboundand inboundwalks.

3.2. Selection of participants
In this paper, we included only PD patients that
contributed 3 walks before and 3 after taking medica-
tion.Healthy controls were selected if they contributed

at least 3 walks in total. We also excluded activity
records in which key values of the demographic survey
were missing or certain sensor readings were missing.
Because the MDS-UPDRS survey data are highly
important for this study, we filtered out participants
whose survey data were not complete. In a few
instances in which lifestyle questions had missing
values, they were replaced (inputted) by the mean of
the feature. The above subject selection rules yielded a
working dataset with 152 PD patients (NPD=152),
and 304 healthy controls (NHC=304). For partici-
pants who performed more than 3 walks in each
category (before/after medication or at another time),
we selectedwalks performed close to the date onwhich
participants completed the demographic survey to
increase the accuracy of labels for each activity. PD
symptoms are known to calm after medication ([22]
Haslinger B et al). Therefore, we wanted to capture the
patient symptoms at peak occurrence, so we only
analyzed thewalks recorded before takingmedication.

3.3. Signal preprocessing
The overall methodology that we followed is illu-
strated in figure 4. We began by pre-processing the
sensor data and reorganized the sensor data into a
readable format. We obtained the two main signals
from the smartphone sensors, i.e., acceleration and
rotation vectors from the accelerometer and gyro-
scope, respectively:

( ) [ ( ) ( ) ( )] ( )a a a a= -i x i y i z i T, , in m s 2

( ) [ ( ) ( ) ( )] ( )w w w w= -i x i y i z i T, , in deg s 1

where i denotes discrete time, α indicates accel-
erometer, andω represents gyroscope.

Figure 3.ParticipantWalkingwith Smartphone in pocket.
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PD tremor and balance classification have tradition-
ally been captured by sway metrics derived from raw
accelerometer values. However, we believe that features
derived from the smartphone gyroscope data should
supply additional information because it records angular
velocity. To facilitate feature extraction, sensors signals
are first divided into 5-s non-overlapping segments. The
signals were subsequently smoothed by computing the
moving average (n=5) and removing sudden changes.
The moving average calculation replaces each value in
the sequence with the average of several points around it
and is givenby the following formula:

( )( )å a=a
-

=

-MA
n

x
1

x
n

i

i
1

0

The values of the three accelerometer and gyro-
scope axes are used to calculate the signal magnitudes,
after which the signal’s 5-s mean is subtracted to elim-
inate gravity or any constant factors such as breathing.
The resulting formula is given below:

⎛
⎝⎜

⎞
⎠⎟( )( ) å a= -a a

=

MagNG Mag
n

i

i

1

⎛
⎝⎜

⎞
⎠⎟( )( ) å w= -w w

=

MagNG Mag
n

i

i

1

where MagNGα and MagNGω are the vector magni-
tudes of the acceleration and the rotation rates,
respectively; and aMag and wMag are the means of
the acceleration and rotation rates, respectively. To
compute the average step time metric, we initially
found the peaks of the accelerometer axis with the
largest magnitude. Only those peaks that are greater
than aminimumpeak height (MPH) are considered as
a step.MPH is calculated by the following:

= + sa a aMPH Mag

where sa is the standard deviation of a.
Figure 5 shows a sample of the accelerometer and

gyroscope signals on the three axes after preproces-
sing, smoothing and removing the gravity component.
Figure 5(b) shows the peaks detected, which are used
to estimate the steps for this walking segment. Our
methodology does not require passing of the signal
throughfilters.

3.4. Feature extraction
From the two calculated magnitudes MagNGα and
MagNGω (referred to as xi in subsequent sections), we

calculated the time, frequency, statistical and wavelet
domain features shown in table 2. After pre-processing
the data, gait features were extracted using Matlab
(Mathworks version 2018b) from accelerometer and
gyroscope data gathered during the walking activity.
Sway area featureswere calculated for the gyroscopedata.
We subsequently combined the extracted features into
larger data frames, and multiple datasets were derived
andused inPDclassification.

Time and statistical features were calculated
directly from x .i Frequency domain features were cal-
culated after computing the fast Fourier transform
(FFT) and power spectral density (PSD). Frequency
domain features were subsequently extracted for each
walking segment record. Wavelet domain features
were calculated after calculating the discrete wavelet
transform (DWT) of theMagNGx signal.

3.5. Sway area andposturography features for
walking balance classification
Although certain prior studies were able to quantify
abnormal sway levels in people with untreated PD, the
majority of these prior studies were based on a small
number of participants and measured sway by means
of force plate or sensors connected to the bodies of the
PD patients. To the best of our knowledge, no large
studies (based on hundreds of patients) have extracted
the sway area as a feature for PD patients using a
smartphone gyroscope while walking at this scale of
participants. Our calculation of sway area using the
gyroscope is also novel because it has traditionally
been calculated using accelerometer data. Ourmethod
for calculating sway area involves plotting values from
two of the gyroscope axes, as shown in figure 6. The
sway area is defined as the area of an ellipse that
encloses the 95 percent confidence interval of all
observed points. Using this methodology, we calcu-
lated the sway area for the XY, XZ and YZ planes, as
shown in figure 6. This methodology is similar to that
used to calculate the sway area using force plate
readings. However, to the best of our knowledge, our
use of the gyroscope to synthesize sway areas for PD
patients has not been reported before. The novelty of
using a smartphone for gait measurements is that the
assessment can be performed while the patient is
walking, which removes the need to explicitly perform
the quiet standing test on force plates. This standing
test measures the ground reaction forces generated by
a body standing on ormoving on the plates.

Figure 4. FlowDiagram for data collection, feature extraction, and classification.
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3.6.Model evaluation
To ensure efficient use of all the data, we conducted
supervised classification experiments using 10-fold
cross-validation and measured the model precision,

accuracy, and area under the curve (AUC). Cross-
validation performed by partitioning data into 10
disjoint folds at the population level. For each fold, we
Train the model using the out-of-fold observations.

Figure 5.Acceleration andRotation signals and gait peak detection.

Figure 6. Sway Areas formultiple 5-s segments of the gyroscope XYplane.
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Then we assess the model performance using the in-
fold data. The average performance metrics are
calculated over all folds. Cross-validation requires
multiple fits but gives a good estimate for the
predictive accuracy of the final model trained and
testedwith all the data.

4. Results

In our prior work ([17] Abujrida et al), we used data
from 50 participants in the mPower study to classify
PD severity and were able to discriminate PD patients
from healthy controls (HC) based only on gait
features. In this work, we extended our prior work by
increasing the number of participants analyzed and
the derived gyroscope features, including the sway area
feature computed on gyroscope data.We also included
lifestyle features for all participants.

4.1. Feature selection
We established which features have statistically sig-
nificant correlations with the MDS-UPDRS surveys
and quantified the level of walking anomalies while
patients walked for 30 s in a straight line. Thewalk data
were labeled using participant self-assessments of their
walk, which were used as labels for ML models. In
constructing a decision tree, the importance of each
feature is calculated by the decrease in the prediction
error (mean squared error) and the increase of

information gain, when the decision tree is split by the
feature variable. Figures 7–9 below show the degree of
importance of the selected features with and without
consideration of lifestyle features.

From figure 7, the entropy rate is the most impor-
tant feature for differentiating the walking balance
severity. This finding agrees with the results of our
prior work. As a demographic feature, age supersedes
any calculated gait feature, which agrees with the find-
ings in prior work ([18] Van Den Eeden) and ([32]
Mayeux, Richard et al). However, the effect observed
in this study is not the effect of aging on walking bal-
ance but is mostly a result of PD complications, as we
address further in the discussion section.

Shaking and tremor can be inferred from gait fea-
tures ([16] Zhan, Andong et al). However, most prior
studies were based on a limited number of partici-
pants, as explained in table 1. Using data from partici-
pants in the mPower dataset, we identify the most
important features that discriminate the level of shak-
ing/tremor in figure 8. We noticed that the lifestyle
features are strongly important in classifying shaking/
tremor. We also noticed that multiple gyroscope fea-
tures are highly important in predicting shaking/
tremor.

Freeze of gait (FoG) has been studied extensively,
and detection of FoG using smart sensors has been
shown to be possible ([23]Mazilu, Sinziana et al) ([28]
Kim, Hanbyul et al). Previous studies were based on a

Figure 7. (a) Features by Importance forWalking Balance including lifestyle features. (b) Features Importance forWalking Balance.

Figure 8. (a) Features by Importance for Shaking/Tremor including Lifestyle. (b) Features Importance for Shaking/Tremor.
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small number of participants and did not study the
effect of lifestyle features and sway area as a gait fea-
ture. We were able to discriminate the severity of FoG
reported by PD patients. We noticed that both the
accelerometer and gyroscope features are highly pre-
dictive of FoG, as shown infigure 9.

Using only the selected features shown in figures 7–9,
we investigated multiple ML algorithms families, includ-
ing decision trees (DT), discriminant analysis (DA), sup-
port vectormachines (SVM), k-nearest neighbors (KNN),
ensemble classifiers (EC) including random forest (RF)
and logistic regression (LR) for classifying thewalking bal-
ance, tremor/shaking and freezing of gait of 152 PD and
304 HC subjects. For walking balance, we found that
entropy rate and cross-correlation were the best features
for classifying the walking balance severity, with p-values
of 0.2792094 and 2.481161e-07, respectively. Note that a

lower p-value does not necessarily guarantee better
ML performance. We discuss the effect of p-value on
classification inadditional detail in thediscussion section.

Random forest is the best classifier for distinguish-
ing between walking balance severities, with an accur-
acy of 93%, precision of 92% andAUC of 0.97. Table 3
compares the performance, accuracy, and AUC of
each classifier type. For shaking/tremor, we found
that MinMaxRate and EntropyRate were the best fea-
tures for classifying severities. Bagged trees is the best
classifier for distinguishing shaking/tremor severity
with an accuracy of 95%, precision of 95% and AUC
of 0.92. For FoG, features including entropy rate,
MinMaxRate, and gyroscope energy successfully
discriminated FoG severity. Bagged trees is the best
classifier for distinguishing FoG severity with an
accuracy of 98%, precision of 96% andAUCof 0.98.

Figure 9. (a) Features by Importance for FoG including Lifestyle. (b) Features Importance for FoG.

Table 3.Comparison ofML algorithms.

Walking balance Precision Accuracy AUC

Accelerometer, Gyroscope RandomForest 92% 93% 0.97

Posturography and Lifestyle Features BaggedTrees 88% 90% 0.95

Cubic SVM 72% 81% 0.92

WeightedKNN 63% 82% 0.86

Logistic Regression 71% 72% 0.78

Fine Tree 75% 83% 0.88

QuadraticDiscriminant 71% 71% 0.75

Shaking Tremor Precision Accuracy AUC

Accelerometer, Gyroscope RandomForest 85% 83% 0.93

Posturography and Lifestyle Features BaggedTrees 95% 95% 0.92

Cubic SVM 63% 68.8% 0.86

WeightedKNN 62% 68% 0.77

Boosted Trees 71% 68% 0.83

Fine Tree 60% 72% 0.87

LinearDiscriminant 48% 61% 0.74

Freeze ofGait (FoG) Precision Accuracy AUC

Accelerometer, Gyroscope RandomForest 92% 96% 0.90

Posturography and Lifestyle Features BaggedTrees 96% 98% 0.98

FineGaussian SVM 92% 93% 0.96

WeightedKNN 91% 92% 0.95

Boosted Trees 90% 91% 0.93

Fine Tree 93% 94% 0.95

LinearDiscriminant 89% 87% 0.71
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4.1.1. Investigating PD classification with only gait
features (excluding lifestyle features)
To isolate the effect of lifestyle and demographic/age
features on model performance, we ran the ML
classification algorithms using gait features while
excluding lifestyle features, and the results of our
classifiers were significantly degraded. For the walking
balance, the best classifier results were random forest
(Acc 77%, AUC 0.71). Figures 10(a), (b) shows the
effect on the total performance of the model and how
the result deteriorated. For shaking/tremor, the accur-
acy of the bagged trees models degraded to Acc 72%
and AUC 0.76, as shown in figures 11(a), (b). For FoG,
the accuracy of bagged trees slightly degraded to Acc
91% and AUC 0.92 but was still accurate. It can be
noted from figures 12(a), (b) how AUC slightly
deterioratedwhen lifestyle features were excluded.

4.2. PDPatients versusHC
One of the goals of this work is to be able to
discriminate PD patients from healthy controls (HC)
based on gait features. Using our selection of PD
patients and HC, we performed ML analysis using the

subject response to the question ‘professionally diag-
nosed’ on their enrolment questionnaire. This ques-
tion was answered one time when participants filled
out a demographic survey to report whether they had
ever been diagnosedwith PD.

SixML algorithmswere used to classify participant
gait features, namely, bagged trees, fine Gaussian
SVM, subspace KNN, boosted trees, fine tree, and lin-
ear discriminant. Entropy rate and MinMaxDiff were
the top features to successfully discriminate HC from
PD. Random forest was the best for discriminating
between PD and HC, with an accuracy of 95%, preci-
sion of 94% andAUCof 0.99.

We presented in table 4 above comparison of the
performance, accuracy, and AUC for the classifiers. In
this comparison, lifestyle features helped to sig-
nificantly improve the result of classification. Specifi-
cally, the false positive rate is significantly higher
(worse AUC curve) if lifestyle features are not inclu-
ded. Removing the lifestyle features led to degradation
of the classification results. Entropy rate and Min-
MaxDiff remained the top features. However, the acc-
uracy of the random forest model deteriorated to Acc

Figure 10. (a)AUC forWalking Balancewith lifestyle features. (b)AUC forWalking Balancewithout lifestyle features.

Figure 11. (a)AUC for Shaking/Tremorwith lifestyle features. (b)AUC for Shaking/Tremorwithout lifestyle features.
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82% and AUC 0.88. Figures 13(a), (b) below shows the
top 20 features selected for discriminating between PD
patients and HC with and without lifestyle features.
Note that lifestyle features are less important in differ-
entiating PDpatients fromHC.

The AUC also decreased significantly when life-
style features were excluded. Figures 14(a), (b) below
shows the AUC for HC/PD patients experiments with
andwithout lifestyle features.

4.3. Top features
The ensemble model uses decision trees with high
variance and low bias as base learners. At each node of
a decision tree, the split feature is found based on
information gain (I.G.) or the more computationally
low-cost Gini impurity reduction method. The infor-
mation gain due to a feature summed across all the
levels of decision trees determines its feature impor-
tance. Random forest and bagged trees are composed
of multiple decision trees, and thus the importance of
a feature is the normalized sum of I.G. delivered by
that feature across all trees. The output of these
separate trees is aggregated and returned as the final
ensemble result.

The correlation coefficient is commonly used to
evaluate the degree of linear association between two
variables. However, it can be shown that a correlation
coefficient close to one might also be obtained for a
clear curved relationship, depending on the nature of

theML algorithm used, and selection of features based
on correlation can be misleading. We found that the
selection of features based on theML ensemble led to a
set of features with high predictive power when used
with nonlinear algorithms. Certain of our top features
do not have a linear relationship with the response
variable. For example, age does not correlate linearly
with the label, as shown in figure 15(a). Prior studies
have found that PD incidence rates for both men and
women increased rapidly after the age of 60 years ([18]
Van et al). Based on our normalized age feature,
elderly people, in general, have higher severities, but as
figure 15(a) shows, severity does not necessarily
increase with age.

In contrast, top gait features (entropy rate and
minMaxDiff) correlate linearly with gait severities.
Figure 15(b) shows that minMaxDiff always increased
as gait severities worsened, which occurs due to
differences in step swing that are captured with
accelerometer peaks. The mean of entropy rate
(figure 15(c)) decreases with the increase in gait seve-
rities due to the irregularity of the walking signal asso-
ciated with PD patients, which is captured by the
accelerometer. Please note that the gait features in
figure 15 are normalized on the participant level,
whereas age is normalized on the population level.

In our analyses, we found that the gyroscope sway
areas contributed significantly to the classification of
walking balance, as shown in figure 7(a), but it had

Figure 12. (a)AUC for FoGwith lifestyle features. (b)AUC for FoGwithout lifestyle features.

Table 4.Comparison ofML algorithms for PDPatients versusHCClassification.

Classifier details Precision Accuracy AUC

Accelerometer, Gyroscope RandomForest 94% 95% 0.99

Posturography and Lifestyle Features BaggedTrees 92% 93% 0.95

FineGaussian SVM 88% 88% 0.96

Subspace KNN 91% 90.4% 0.92

Boosted Trees 84% 90% 0.97

Fine Tree 90% 91.2% 0.96

LinearDiscriminant 83% 85.5% 0.91
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only minor contributions to shaking/tremor classifi-
cation and no contribution to FoG classification. The
accelerometer sensor and features were more useful in
classifying shaking/tremor and FoG. Gyroscope-
based analyses of sway can supply a powerful tool for
early clinical trials and for monitoring the treatment
efficacy for balance disorders in PD patients. Gyro-
scope sway area calculation can also be used in the
online assessment of MDS-UPDRS walking balance
(MDS-UPDRS 2.12).

4.4. ImprovingAccuracywith Ensemblemethods
In this work, we attempted different variations of the
ensemble random forest to tune its parameters. Ran-
dom forest is composed of multiple estimators (deci-
sion trees) and aggregates their output to return the
final ensemble result. Ifwehave a classificationproblem
with a data set in the form of ( ) ( )¼¼X Y X Y, . ,n n1, 1 ,

where X is a d-dimensional predictor variable and
Y is a univariate response, to predict Y with J classes,

{ }Î ¼ -Y 0, 1, , J 1 ,i the target function of interest
is [ ∣ ]( )= = = ¼ -P Y j X x j 0, 1, , J 1 .

Random forest works by drawing anobservations
( ) ( )¢ ¢ ¼¼ ¢ ¢X Y X Y, n n1, 1 , at random with replacement
from the original data set. These drawn observations
are the only observations considered in growingMdif-
ferent randomized trees to obtain different estimates

(·) (·) (·) (·)¼g g g g, , .M1 2 3 In R random forest imple-
mentation, this number of (trees in the forest) is repre-
sented by (ntree). The resulting estimator functions
can bewritten as follows:

(·) (( ) ( ))(·)= ¢ ¢ ¼¼ ¢ ¢g h X Y X Y, .n n n n, 1, 1 ,

where the function ( )h .n defines the estimator as a
function of the dataset.

At each cell of each tree, a split is performed based
on a number of variables mtry chosen randomly
among the overall number of variables ( )p . The con-
struction of individual trees is stopped when each cell
contains less than nodesize points.

For any query point Îx X ,i each tree predicts Yi
by growing the tree and making the final estimation
that only depends on the an preselected data points.
Because the overall decision is obtained via a majority
vote among the classification trees, we can construct

Figure 13. (a) Feature Importance for PDPatients versusHC (including lifestyle). (b) Feature Importance for PDPatients versusHC
(no lifestyle).

Figure 14.AUC for PDpatient versusHC classificationwith andwithout lifestyle features.

14

Biomed. Phys. Eng. Express 6 (2020) 035005 HAbujrida et al



an ensemble-based function estimate gens(·) by taking
linear combinations of the individual estimates:

(·) ( ))å=
=

g c gens
k

M

1
k k

For ensemble bagging and (Breiman’s [33]) origi-
nal random forests, the linear combination coeffi-
cients ck=1/M are averaging weights, which also
result in variance reduction.

Tuning the forest parameters might result in a
computational burden, particularly for large datasets
with hundreds and thousands of observations and
variables. Due to the manageable size of this study
dataset, we tuned the following forest parameters with
an affordable computational cost:

Number of trees to grow (ntree, _Acc)

Number of variables randomly sampled at each
split (mtry_Acc)

Maximumnumber of terminal nodes (mx_Acc)

Minimum size of terminal nodes (nodeSize_Acc).

Figure 16 shows different parameters of the ran-
dom forest ensemble method and their effects on the
model performance. When addressing classification
problems, it is usually recommended to set node-
size to 1, andmtry to ( )p ([34] Liaw et al).

Extensive discussion exists in the literature relative
to the influence of mtry on the overall performance
of the model. ([35] Cutler et al) show that different
values of mtry did not affect the classification rates of
their model and that other performance metrics (sen-
sitivity, specificity, kappa, and ROC AUC) were stable
under different values of mtry. However, ([36] Strobl
et al) show that mtry had a strong influence on pre-
dictor variable importance estimates. Additionally,
([37]Genuer et al) claim that the default value of mtry
is too small. Therefore, their approach is tomakemtry
as large as possible (limited by available computing
resources). We do not fully agree with the last finding,
and we noticed that the overall accuracy improved sig-
nificantly by increasing mtry. However, the relation-
ship is not linear because the accuracy was maximized
when mtry is 60% and 70% of p. By default, the max-
imum number of leaf nodes is set to the maximum
possible. We experimented with limiting this para-
meter mx, which led to a negative impact on the over-
all accuracy.

It is clear that the forest variance decreases as M
grows. Thus, more accurate predictions are likely to be
obtained by choosing a large number of trees (ntree).
The computational cost of increasing a forest increases
linearly with M, and thus a good choice results from a
trade-off between computational complexity and acc-
uracy. Finally, the default value of the parameter

Figure 15.Top features versus severity of gait anomalies.
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nodesize is 1 for classification and 5 for regression.
These values are often reported as good choices ([38]
Andrés et al), and even though this selection is not sup-
ported by solid theory, our results agree with those
findings.

5.Discussion

We calculated and compared the feature importance
computed using bagged trees and random forest Algo-
rithms. While p-value helped in some instances to select
the features most correlated with the response variables
([39] Schaafsma, Joanna D et al), many data scientists
have raised concerns related to the validity of using the
p-value as a significant measure for ML. For instance,
Nuzzo et al posit that p-values, which are the ‘gold
standard’ of statistical validity, are not as reliable asmany
scientists assume ([40]Nuzzo et al). Other alternatives to
the p-value have also been proposed ([41] Lu et al). We
found that the feature importance calculation based on
machine learning is a better measure of feature signifi-
cance. A p-value of�0.05 did not always indicate the
significance of a feature anddid not lead to improvement
of results if included in theMLclassification.

6. Conclusion

Remote measurement of gait has become an important
tool for monitoring the progression of PD. Although
measurements reduce hospital visits and offer conveni-
ence to both PDpatients and the healthcare provider, the
validity of these measurements compared with assess-
ments in the clinic continue to be a challenge. In this

study, we addressed the unique gait characteristics of PD
and inferred the stage of each PD gait modality through
machine learning classification of smartphone sensor
data collected by a mobile health application. This study
contains three main contributions: (1) Combination of
time, frequency, and statistical features with sway area
and lifestyle features to remotely infer the level of PD
walking modalities for a large set of participants; (2)
identification of the most important features that offer
deeper ailment understanding and classification of PD
gait modalities; and (3) determination of the best ML
algorithm for analyzing each gait modality and the one
that best discriminates PD patients from HC. Although
the classification results were affected by the subjective
nature of PD labels assigned by patients based on their
responses to the MDS-UPDRS questions, we were able
to demonstrate with a relatively large number of
participants that remote and automatic PD patient
classification based on sensor activity data can supply
objective assessments of PD-related gait patterns and
severity of gait anomalies, which ultimately has the
potential to improve remotehealthcare for PDpatients.

7. Futurework

Planned future work includes exploration of various
signal segmentation strategies, including various seg-
ment lengths, Bayesian segmentation, and overlapping
segments. Neural networks, which have recently
emerged as viable candidates for many smartphone
sensing problems including activity recognition and
gait assessment, will also be explored. Additional sway
features such as sway velocity and acceleration will be

Figure 16.Random forest parameter tuning.
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examined. Finally, we plan to test various ensemble
classification methods such as gradient boosted
machines andAdaBoost algorithms.
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