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Abstract—Human Context Recognition (HCR) from smart-
phone sensor data is an essential task in Context-Aware (CA) sys-
tems including those targeting healthcare and security. Two types
of smartphone HCR studies (and datasets) have become popular
for training HCR models: a) scripted and b) Unscripted/In-
the-wild. Supervised machine learning HCR models can achieve
good performance on scripted datasets due to their high quality
labels but such models generalize poorly to in-the-wild datasets
which are more representative of real-world scenarios. In-the-
wild datasets are often imbalanced, have missing or wrong
labels, with a diversity of phone placements and smartphone
models. Lab-to-field approaches try to train HCR models to
learn a robust data representation from a high-fidelity, scripted
dataset that is used to improve performance on noisy in-the-
wild datasets that have similar labels without having to incur
the high expense of gathering high-quality labeled dataset. In
this paper, leveraging coincident datasets with the same HCR
labels collected in separate scripted and unscripted studies, we
propose Triplet-based Domain Adaptation for context REcogni-
tion (Triple-DARE), a novel lab-to-field neural networks method
with three key components: 1) a domain alignment loss to
learn domain-invariant embeddings, 2) a classification loss to
maintain task-discriminative features, 3) a joint fusion triplet
loss designed to increase intra-class compactness and inter-class
separation in the embedding space of multi-labeled datasets. In
rigorous evaluation, Triple-DARE improved on the F1-score and
classification accuracy of state-of-the-art HCR baselines by 6.3%
and 4.5%, respectively, and on HCR models with no adaptation
by 44.6% and 10.7%, respectively.

Index Terms—Human context recognition, domain adaptation,
ubiquitous computing.

I. INTRODUCTION

Context-Aware (CA) systems that can adapt their behavior
based on the user’s current context (situation) have significant
potential in numerous domains, including healthcare, smart
homes, and security systems [1]. Human Context Recognition
(HCR), the task of detecting a user’s current situation, is
essential for CA systems. While several definitions exist in
the literature, in this work, we define Human Context as
an ⟨Activity, Prioception⟩ tuple, which consists of the user’s
current activity (e.g., walking, running) and the phone place-
ment (e.g., in a pocket, hand, or bag). We focus on CA
and HCR on smartphones that are now ubiquitously owned
and are equipped with a rich collection of sensors such as
accelerometers, gyroscopes, and position sensors. Two study
designs are common in human subjects studies to gather HCR
datasets for supervised machine learning 1) scripted [2] or 2)
in-the-wild [3]. In scripted studies, participants perform tasks

in a pre-planned order under the supervision of a human proc-
tor while a smartphone app continuously records smartphone
sensor readings. Afterward, the human proctors annotate users’
sensor data with labels of the contexts they visited. In contrast,
in-the-wild studies involve collecting data for several days in
the real world as subjects live their lives. A smartphone app
continuously gathers sensor data and periodically prompts the
smartphone owner to report their current context, which is then
used to annotate their sensor data.

Issues with In-the-wild datasets that reduce HCR per-
formance: Supervised machine learning classification HCR
models typically achieve high accuracy on scripted datasets
due to their high-fidelity sensor data and high-quality con-
text labels. For instance, DeepContext, a state-of-the-art deep
learning HCR model, achieved 91.2% accuracy on a scripted
dataset[4]. However, scripted datasets are not realistic as the
contexts visited and visit patterns are not representative of
real life. It is crucial that HCR models are accurate on in-
the-wild datasets, which are more representative of real-world
deployment scenarios. However, HCR models achieve lower
performance when trained directly on more realistic, in-the-
wild datasets. For instance, Vaizman achieved 71.7% accuracy
using a Multi-Layer Perceptron (MLP) HCR model trained
directly on an in-the-wild dataset. This represents a 19.5%
drop in accuracy of state-of-the-art HCR models on scripted
vs. in-the-wild datasets. This discrepancy in performance is
caused by in-the-wild dataset issues including:

1) Diversity of Phone Placements: or positions in which
smartphones are placed (prioceptions). Sensor signals have
different signatures for the same activity when the phone is
carried in different prioceptions [5]. In fact, prioception is one
of the most significant sources of variability in smartphone
context sensor data [3], as illustrated in Figure (2). Smartphone
users may choose to carry their smartphones in a bag, in their
hand, or in their coat pocket while performing a given activity
(e.g., walking).

2) Weak, noisy, and missing context labels: as users stop
providing labels when their lives get busy, or they may erro-
neously provide wrong labels [6], which presents a challenge
for supervised machine learning algorithms [7].

3) Diversity of smartphone models: Unlike scripted HCR
studies where subjects use a single study phone model pro-
vided by the proctor, subjects in in-the-wild HCR studies
typically use their own phones. The sensor values recorded
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Fig. 1: a) The nature of the two smartphone context data we
use in this work. b) A high-level overview for Triple-DARE’s
problem and approach.

for a given context by different smartphone models can differ
by as much as 30% [8], presenting an additional challenge for
machine learning classifiers.

Lab-to-field methods: have recently emerged as viable
solutions to achieve good HCR performance on in-the-wild
datasets that have noisy, low-quality labels [9]. Lab-to-field
approaches try to train highly accurate machine learning
models on scripted datasets, which are adapted for in-the-
wild datasets with the hope of maintaining good performance.
However, in general, the performance of HCR models trained
naively on scripted datasets often drops when tested on in-
the-wild datasets (Going from Lab-to-field). This performance
drop is because in addition to the in-the-wild dataset issues
listed above, the contexts visited by subjects in the scripted
study, as well as their context visit order and visit duration
differ significantly from in-the-wild scenarios. Consequently,
there are significant differences between the distribution of
features extracted from scripted vs. in-the-wild datasets, also
known as the covariate shift problem [9]–[11].

Domain Adaptation (DA) is a transductive transfer learning
method and one of the main solutions used to adapt neural
networks to mitigate the covariate shift problem. DA has
been employed in various related domains, including object
detection in computer vision and the problems caused by
the variability of wearable sensor placement in ubiquitous
computing[5], [11]. Unsupervised DA (UDA) tries to learn
a deep learning model using a combination of a labeled
source (e.g. scripted dataset) and unlabeled target (e.g. in-the-
wild) samples with different distributions to achieve accurate
predictions on previously unseen, unlabeled (e.g. in-the-wild)
samples [5], [12]. Figure (1) provides a high-level overview
of the problem, challenges, and our approach.

Challenges. Two key challenges must be addressed for
using UDA for Lab-to-Field generalization of smartphone
context recognition. First, the previously described data issues
with in-the-wild datasets (the diversity of placements, weak
and noisy labels, and diverse smartphone types) must be
overcome. Secondly, it is challenging to develop a robust
method for transferring knowledge from a scripted dataset to

Fig. 2: The influence of diverse phone placements on sensor
data is observable in the triaxial accelerometer signal for the
same walking activity but with different prioceptions.

a more realistic but considerably noisier in-the-wild dataset
with sparse labels.

Our approach. We are motivated by the recent empirical
success of triplet loss in face identification [13], [14], where
variations of the same person’s face images are mapped closely
in the learned embedding space. We believe sensor data can
benefit from the same approach where there is often variation
in sensor signatures corresponding to the same context. Our
belief is also consistent with Khaertdinov et al.’s findings
where triplet loss was applied recently to mitigate the effects
of subject heterogeneity and improve model generalizability
[15].

We propose Triple-DARE, a deep Lab-to-field UDA method
that is able to leverage the tremendous amounts of unlabeled
in-the-wild smartphone HCR data, decreasing the need for
human-annotated labels. To facilitate our DA approach, we
utilized coincident scripted and in-the-wild HCR datasets in
which similar context labels were gathered in both studies [1].
These coincident datasets and similar context labels ensure
that there exists a feature representation of contexts that is
common between the scripted and in-the-wild datasets, a
key requirement for the DA approach. We demonstrate our
method’s applicability to HCR models deployed in realistic
environments by using context labels gathered in a scripted
study only during model development and using DA to
mitigate the influence of potentially noisy labels and retain
HCR performance on an in-the-wild dataset. Triple-DARE
outperforms state-of-the-art baselines with 3.79% and 1.89%
increases in F1-score and classification accuracy, respectively,
and also achieves improvements of 39% and 14.7% in F1-
score and classification accuracy, respectively, HCR models
without Triple-DARE.

Contributions. The main contributions of this paper are:
1) We propose Triple-DARE, a novel UDA deep-learning

framework, which uses a scripted dataset is to improve
the HCR accuracy of predicting in-the-wild contexts.
Triple-DARE utilizes a domain alignment loss to learn
domain-invariant features, a classification loss to main-
tain task-discriminative features, and a joint fusion triplet
loss to increase intra-class compactness and inter-class
separation.

2) We rigorously evaluated Triple-DARE, comparing it to
multiple state-of-the-art unsupervised domain methods,



including DAN[16], CORAL[17], and HDCNN[18], and
bench-marking improvements in HCR performance on
target domains in several use cases.

3) We demonstrate that Triple-DARE mitigates in-the-wild
dataset challenges when compared to state-of-the-art DA
methods, achieving high prediction performance on the
target (in-the-wild) domain without the need for large
amounts of source labeled samples.

The remainder of this paper is organized as follows. Section
II lists related work. Section III introduces our proposed
approach. Section IV demonstrates our evaluation and results.
Finally, Section V concludes the paper.

II. RELATED WORK

Lab-to-field generalization. Lab-to-field methods previ-
ously proposed to handle covariate shifts include importance
re-weighting[9], [19] and Positive Unlabeled (PU) classi-
fiers[1]. There is very little work on lab-to-field generalization
for HCR. However, a related work that dealt with this problem
on wearable electrocardiogram (ECG) data [9], used impor-
tance re-weighting to adapt a linear logistic regression model.
However, these methods have achieved lower performance
when applied to deep neural networks[20].

DA for wearable sensor data. Several DA methods have
been proposed to adapt a trained model for use on another
related dataset in ubiquitous computing [5], [18], [21]. DA
has previously been used to address the issue of variability in
the placement of wearable sensors, learning domain-invariant
accelerometer [5], [18] and gyroscope[5] features from sen-
sor data by minimizing a discrepancy distance in the Con-
volutional Neural Network (CNN) embedding. HDCNN[18]
investigated adapting a pre-trained model on smartphone data
to work on unlabeled smartwatch data. A discrepancy-based
approach using Kullback-Leibler (KL) divergence was em-
ployed to adapt the model that was pre-trained on smartphone
data, for unlabeled smartwatch data. Prior work focuses only
on reducing the global distribution discrepancy while learning
common feature representations across domains [5], [18]. Our
work builds on prior work by utilizing a joint fusion triplet loss
to improve intra-class compactness and inter-class separability
[12], [13].

III. PROPOSED Triple-DARE METHODOLOGY

A. Problem Formulation

In this work, we utilize data from two coincident datasets
in which similar context labels were gathered: 1) a scripted
dataset (source) with high-quality labels and 2) an in-the-
wild dataset (target) with similar context (⟨Activity, Phone
Prioception⟩) labels, shown in Table II. Initially, the HCR
model is trained using the labeled source dataset. Afterwards,
the trained HCR model is utilized to recognize unlabeled
contexts in the target dataset. With regards to UDA, there are
labeled samples for the source domain and unlabeled samples
for the target domain, which have different data distributions.
Our goal is to learn a classifier from a combination of
labeled source and unlabeled target data, which generalizes

well on the target domain. Formally, we have labeled samples
Ds = {(xs

i ,y
s
i )}

ns
i=1 and unlabeled samples Dt = {(xt

i)}
nt
i=1

where ns and nt represent the number of samples in the
source and target domains, respectively. Both the source and
the target domain share the same feature space Xs = Xt and
label space Ys = Yt, but differ in the marginal distribution
(Ps(xs) ̸= Pt(xt)). The conditional distributions are presumed
to be equal Ps(yt|xs) = Pt(yt|xt). We denote x as a feature
vector and y as a human context represented by a multi-label
output vector, where each label produced is a binary output
(E.g walking vs not walking). The source and target tasks are
presumed to be the same.

B. Overview

As illustrated in Figure (3), Triple-DARE has two types
of feature sources extracted from both the source scripted
and target in-the-wild datasets : 1) Time and frequency based
handcrafted features handled by a feed-forward network and
2) raw three-axial sensors fed into an attention-based CNN
that extracts salient features from raw sensor data using a soft
attention mechanism. Triple-DARE has three major learning
components: 1) A domain alignment loss Ld to extract embed-
dings that are invariant across domains. 2) a classification loss
Lcls to maintain task-discriminative features, 3) a joint fusion
triplet loss Ltri to increase intra-class compactness and inter-
class separation in the learned embedding space by learning
similar contexts represented by variations of sensor inputs.
Triple-DARE’s final output is used for multi-labeled context
predictions. For example, based on our <Activity, Phone
placement> definition of context, example contexts include
⟨"Sitting","In Bathroom" with "Phone In Hand"⟩. In order
to perform our context predictions by learning discriminative
and domain-invariant embeddings, our final objective is to
minimize the cost function C(·)

C(θ) = λ1Lθ
cls + λ2Lθ

d + λ3Lθ
tri, (1)

where θ are model parameters, λ1, λ2, and λ3 are balancing
coefficients. Each of these types of losses are described in
more detail in subsequent subsections.

C. Feature Generation

For a given smartphone context dataset, two views are
created from raw sensor input data. View 1 is a vector obtained
by extracting handcrafted features from all available sensors.
View 2 consists of raw tri-axial sensor data. Different feature
encoders were used for each type of input view: 1) Multi-
Layer Perceptron (MLP) encoder for handcrafted features,
and 2) An attention-based CNN encoder for raw sensor data.
Finally, a joint fusion encoding is obtained by concatenating
the two feature encodings generated. In work on our prior
DeepContext HCR model, we found this two-view feature
generation approach to be effective [4].

We use data from 5 sensors: accelerometer, gyro-
scope, GPS, magnetometer, and phone state (e.g., is phone
screen locked/unlocked?). We compute statistical, time- and
frequency-based features for each sensor type at a sliding
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s: signal vector, N: signal vector length Q: quartile, cov: covariance

GPS Features

Significant changes from the previous location state
Estimated speed
Changes in latitude and longitude

Phone State Features

Is phone screen unlocked? Is battery charging?
Is ringer mode set to silent? Is phone connected to WIFI?

TABLE I: A sample list of handcrafted features extracted
from accelerometer, gyroscope, and magnetometer sensor data,
adopted from [3], [22].

window level. A 10-second window was selected based on
findings of prior work [4]). Z-score normalization zi =

xi−x̄
s

was then applied. These 188 handcrafted features [3] were
used to construct a vector that was fed into a feed-forward
network.

The CNN auto-learns a representation from raw sensor
data from three axial sensors (accelerometer, gyroscope, and
magnetometer). Adapted from our previous work, DeepCon-
text [4], the CNN we leveraged has a soft attention mechanism
that learns salient features, while giving higher weights to
regions of the raw sensor data that are more predictive of
the user’s context. As a result, the model is able to highlight
discriminative CNN features or different contexts.

D. Domain Alignment Loss

The goal of the domain alignment loss is to map the source
and target feature encodings into a standard feature distribution
space and learn common feature representations across do-
mains. We utilized Multi Kernel Maximum Discrepancy Mean
(MK-MMD), an extension for Maximum Discrepancy Mean
(MMD) [23] as our domain alignment loss. MMD is a non-
parametric distance measure that may be used to assess the
discrepancy between marginal distributions [16].

The formulation of MK-MMD is defined as:

q(X s,X t) =
∥∥EX s [ϕ (xs)]− EX t

[
ϕ
(
xt
)]∥∥

H
, (2)

where ∥.∥Hk
is the RKHS norm and ϕ(·) is a feature map

defined as a combination of multiple positive kernels. The
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domain alignment loss can be obtained by:

Lθ
d =

∑
l∈N l

q2
(
X s

l ,X t
l

)
. (3)

MK-MMD is calculated per layer of the network to quantify
the distance between the data representation for the source and
target domains. N l is the number of layers, and (X l

s,X l
t ) are

the distributions of the source and target domains, extracted
from the lth layer in the network.

E. Classification Loss

The classification loss aims to leverage source domain labels
in discovering features that are discriminative for context
predictions. Optimizing our model for classifying contexts on
the source domain guides the overall learning process. Since
the labels of Ds are available, the classification loss is defined
as:

Lθ
cls =

1

Ns

Ns∑
i=1

ℓΨ(fϕ(x
s
i ), y

s
i ), (4)

where fϕ(·) is a classifier, Ns is the number of labeled training
samples and ℓΨ is a binary cross-entropy function weighted
by inverse class frequency to account for class imbalance
where infrequently-occurring classes get higher weights than
frequently occurring classes.

F. Triplet Loss

The triplet loss is used to pull samples belonging to the
same or similar classes together, while pushing away samples
belonging to different classes in an embedding space[13], [14].
Given three types of samples: 1) an anchor sample xa (i.e. a



query sample), 2) a positive sample xp belonging to the same
class as the anchor, and 3) a negative sample xn belonging
to a different class from the anchor. Along with a distance
function d, triplet loss is defined as the following:

Lθ
tri =

N∑
i

[
d(xi

a, x
i
p

)
− d(xi

a, x
i
n) + α]+ (5)

Where α is a parameter for the margin between positive and
negative samples, and x is used here to represent an embedding
of x for notation simplicity. Pairs of positive samples are
pulled together jointly, while pairs of positive and negative
samples are pushed away by some margin α.

G. Joint-Fusion Triplet Mining

Triplet mining is the process of constructing triplets (anchor,
positive and negative) for triplet loss calculations. Following
the practice in [13], we adopt the online triplet mining strategy
which does not require a complete pass on the training set
beforehand. Since finding triplets across two domains requires
the existence of target domain labels, the classifier trained
on the source domain is used to construct pseudo labels for
target domain samples during training the classifier, which
is one of the most common solutions for UDA problems.
[12]. We re-assign pseudo labels every few iterations because
the classifier accuracy on the target dataset increases steadily
during training. Additionally, the domain alignment loss can
also improve the classifier’s accuracy on the target dataset by
lowering the distribution disparity. As a result, the quality of
the pseudo label can automatically improve. We create triplets
from two mini-batches of samples from the source and target
domains after concatenating them into one mini-batch. For
constructing triplets suitable to our multi-labeling settings, we
need a notion of similarity between multi-labeled vectors. We
first define a compatibility score between two contexts y1, y2
that are both represented as binary labels, as the dot product
between them:

c(y1, y2) = y1 · y2 (6)

Because our dataset is extremely imbalanced, we consider
all the positive examples in constructing the triplets. We follow
a similar strategy to [13] that focuses on triplets contributing
the most to the learning process but modified using our
compatibility score to select triplets that satisfy this condition:

d(xa, xp) + α > d(xa, xn) & c(ya, yp) > c(ya, yn) (7)

IV. EXPERIMENTS

We evaluated Triple-DARE and baseline models for per-
forming multiple UDA use cases on coincident scripted and
in-the-wild smartphone HCR datasets. The overarching goal
was to use Triple-DARE to learn a robust representation from
the scripted dataset (source), which is then used to improve
HCR on the in-the-wild dataset (target).

TABLE II: The percentage of positively labeled contexts.

Contexts Scripted % P In-the-wild % P

Bathroom 3.15% 2.17%
Jogging 2.04% 0.27%
Lying Down 1.10% 16.24%
Running 1.95% 0.37%
Sitting 11.99% 38.71%
Sleeping 2.19% 37.69%
Stairs - Going Down 2.52% 2.00%
Stairs - Going Up 0.89% 1.92%
Standing 1.71% 8.46%
Talking On Phone 1.41% 1.27%
Typing 3.65% 6.45%
Walking 64.00% 13.51%

Phone Prioceptions
Phone In Hand Phone In Pocket Phone In Bag

Datasets Notations
SPrioception Scripted context dataset
WPrioception In-the-wild context dataset
e.g. SBag refers to scripted contexts, annotated with "Phone In Bag"

A. Datasets
In-the-wild dataset: 103 participants downloaded a smart-

phone app that passively collected data from their smartphones
as they lived their lives for two weeks. Participants were
periodically asked to self-report the labels of the contexts
they visited, listed in Table (II). By acquiring data utilizing
individuals’ smartphones, our in-the-wild dataset reflected a
diversity of manufacturer hardware and contexts visited by the
user were realistic. Scripted dataset: The scripted study was
conducted in specific buildings, laboratories, or routes on a
college campus. The smartphone app collected data from 100
participants that visited pre-planned contexts. Human proctors
oversaw and manually annotated the data during the data
collection session, which lasted about an hour per subject.

Data pre-processind and feature extraction: Both the
scripted and in-the-wild datasets were pre-processed and fea-
turized in the same way. Contexts were handled as multi-label
vectors, with segments created using a 10-second window
size. The number of samples was 21,846 and 631,026 for
the scripted and in-the-wild datasets, respectively. Table (II)
lists the context labels in both datasets. To increase the
generalizability of our model to unseen subjects, we adopted
subject-wise cross-validation in which all of a subject’s data
appeared either in the training or test sets but not both. In
each UDA experiment, 90% of source domain data was used
for training, 10% of source data was reserved for validation,
and all data in the target domain was used for testing.
B. Baselines

We compared Triple-DARE to state-of-the-art deep-learning
based DA models : 1) CORAL[17]: A UDA model that utilizes
deep-coral discrepancy loss. 2) DAN[16]: A model with only
our MK-MMD domain alignment loss. 3) HDCNN[18]: a
state-of-the-art baseline DA method previously applied on
smartphone sensor data. HDCNN is a DA method with KL
divergence loss on the feature vectors obtained across domains.
4) SOURCE: A model trained on the source domain without
any adaptation to the target domain. Our proposed model,
Triple-DARE, which uses our joint-fusion triplet loss.

C. Implementation and Experimental Settings
1) Hyper-parameters Grid search was used to tune the

hyper-parameters of the MLP and CNN. The learning rate



TABLE III: Overall context prediction

Overall UDA Tasks Accuracy F1-micro

Triple-DARE 0.879 0.366
CORAL 0.806 0.302
DAN 0.673 0.294
HDCNN 0.816 0.3215
Source (no adaptation) 0.433 0.259

Lab-to-field UDA Tasks Accuracy F1-micro

Triple-DARE 0.845 0.188
CORAL 0.839 0.127
DAN 0.698 0.122
HDCNN 0.768 0.146
Source (no adaptation) 0.552 0.133

was initialized to 1e-1, balancing coefficients were initialized
as λ1 = 1, λ2 = 0, and λ3 = 0. The balancing coefficients
and the learning rate were increased or decreased following
the schedule mentioned in [24], making our model highly
confident on source labels and less sensitive to low-quality
pseudo labels at the early stages of the training. The batch
size was set to 256 and the Adam optimizer was used. The
back-bone layers used in our DA method were shared across
all experiments: handcrafted-features with a 2-layer MLP,
each layer having 16 hidden dimensions and an MLP domain
classifier with one layer with 32 hidden dimensions, and CNN
with attention blocks for separate and merged sensors layers,
followed by an average pooling layer, adopted from [4]. All
raw sensor data were input to a 3-layer CNN. Then their
outputs are concatenated and forwarded to another 3-layer
CNN. Attention blocks are used to focus on salient regions in
inputs [4], [25]. Euclidean distance was used for computing
pairwise distances in triplet mining and α was set to 0.1.
The final context prediction layer has LeakyReLU activation,
followed by Sigmoid activation.

2) Evaluation Protocol Due to the class imbalance in our
context datasets, in addition to classification accuracy, we used
the F1 metric to evaluate HCR performance in the UDA
setting. As the sizes of the source and target domain datasets
may not be the same, we iterate through the target domain
dataset with random sampling. However, we evaluate our
model on all samples in the target domain dataset.
D. Results and Findings

1) Overall Results: The overall performance scores for
our Triple-DARE compared to baseline models is reported in
Table (III). Triple-DARE outperforms the baseline methods
in the overall UDA tasks and Lab-to-field UDA task by
4.5% increase in F1-score and 6.3% increase in classification
accuracy. The result, shown in Figure (4), demonstrate the per-
formance per label aggregated over all the UDA tasks, showing
that our approach outperforms state-of-the-art methods across
several context labels. In general, the advantage of using UDA
methods can be observed over classifiers that are solely trained
on the source domain without leveraging unlabeled data. In
particular, UDA methods helped a lot in the Jogging, Running,
Going Up and Down Stairs labels where the user is likely to
stop providing labels while performing these activities in the
wild. Triple-DARE improves adaptation using the high fidelity
labels acquired in the scripted study.

2) Training under insufficient labels: As presented in Table
(IV), we studied the performance of our model when the

number of labels from the source domain is varied. Triple-
DARE achieves higher prediction scores on the target domain,
with small amounts of source labels, outperforming baseline
methods in almost all UDA tasks.

3) Intra-class compactness and inter-class separation:
To provide a measure of compactness and separation
in the learned feature embeddings, we utilized the
Silhouettescore Score = bi−ai

max(bi,ai)
, where bi is the shortest

mean distance between a point to all other points in any
other cluster, whereas ai is the mean distance of i and all
data points from the same cluster. This score measures both
compactness and separation. To calculate the Silhouette scores
on the learned feature embeddings, we assign each instance
with cluster labels using one of the binary context labels.
Then, we averaged the scores over labels. The scores are
reported in Figure (5), which shows that Triple-DARE achieves
better compactness and separation scores in most UDA tasks.
CORAL achieves higher scores than DAN in most cases.

V. CONCLUSION

Several issues reduce the performance of machine learning
HCR models on in-the-wild datasets, including the diversity
of phone placements and smartphone models and weak, noisy,
or missing labels. Lab-to-field methods try to improve the
performance of HCR models by first training them on similar
scripted datasets, then adapting them for use in predicting con-
text labels in in-the-wild datasets. We designed DA strategies
that are susceptible to covariate shifts between the scripted
and in-the-wild datasets, improving lab-to-field generalization.
This paper proposed Triple-DARE, a UDA deep-learning
model for HCR on smartphones, comprised of three parts:
1) domain alignment loss using MK-MMD 2) a classification
loss and, 3) joint-fusion triplet loss designed for multi-labeled
datasets. Triple-DARE learns domain-invariant features com-
mon to both datasets, reducing the influence of highly noisy
in-the-wild data by using its attention mechanism to focus
on salient regions in sensor inputs, achieving a high F1-score
for various UDA tasks on our scripted and in-the-wild context
datasets. Using its domain alignment loss, Triple-DARE is able
to map the source and target feature encoding into a standard
feature distribution space with better performance than state-
of-the-art baseline methods. Furthermore, the triplet loss im-
proves discrimination, increasing intra-class compactness and
inter-class separation while leveraging massive amounts of
unlabeled data. Triple-DARE outperforms other state-of-the-art
DA baselines, improving on their F1-score and classification
accuracy by 4.6% and 1.89%, respectively, and improving on
models with no adaptations by 10.7% and 14.7%, respectively.
In future work, we plan to leverage our proposed method
in representation learning for smartphone sensor data. One
limitation in our model is the assumption that an identical
number of sensors are available in both scripted and in-the-
wild datasets. We could improve our framework by increasing
model robustness against missing sensors during model infer-
ence.



TABLE IV: F-1 scores - comparing different methods for various UDA tasks, varying the amounts of source labels used.

Scripted contexts with cross-prioception UDA tasks Lab-to-field UDA Tasks

Training % Method
SBag

→
SHand

SBag

→
SPocket

SHand

→
SBag

SHand

→
SPocket

SPocket

→
SBag

SPocket

→
SHand

Avg
SBag

→
WBag

SHand

→
WHand

SPocket

→
WPocket

Avg

0.2 Triple-DARE 0.500 0.651 0.213 0.318 0.652 0.467 0.467 0.101 0.080 0.326 0.169
CORAL 0.357 0.328 0.357 0.428 0.352 0.378 0.367 0.089 0.087 0.150 0.109
DAN 0.341 0.436 0.285 0.265 0.418 0.403 0.358 0.079 0.077 0.165 0.107
HDCNN 0.341 0.492 0.472 0.470 0.468 0.380 0.437 0.087 0.084 0.181 0.117

0.4 Triple-DARE 0.557 0.617 0.444 0.492 0.767 0.511 0.565 0.118 0.143 0.359 0.207
CORAL 0.380 0.584 0.455 0.457 0.633 0.484 0.499 0.092 0.075 0.165 0.111
DAN 0.452 0.509 0.418 0.451 0.721 0.459 0.502 0.101 0.093 0.244 0.146
HDCNN 0.424 0.580 0.504 0.558 0.704 0.441 0.535 0.106 0.108 0.266 0.160

0.6 Triple-DARE 0.497 0.588 0.570 0.653 0.744 0.542 0.599 0.111 0.112 0.341 0.188
CORAL 0.577 0.688 0.505 0.505 0.754 0.448 0.580 0.110 0.123 0.210 0.148
DAN 0.540 0.634 0.428 0.459 0.653 0.429 0.524 0.100 0.084 0.209 0.127
HDCNN 0.345 0.561 0.575 0.540 0.645 0.445 0.518 0.094 0.102 0.285 0.160

Average Triple-DARE 0.518 0.619 0.409 0.488 0.721 0.507 0.544 0.111 0.112 0.341 0.188
CORAL 0.438 0.533 0.439 0.463 0.580 0.437 0.482 0.097 0.093 0.173 0.122
DAN 0.440 0.526 0.377 0.392 0.597 0.430 0.461 0.096 0.087 0.198 0.127
HDCNN 0.370 0.544 0.517 0.523 0.606 0.422 0.497 0.096 0.098 0.244 0.146

- No Adaptation 0.319 0.469 0.476 0.470 0.260 0.315 0.385 0.108 0.110 0.180 0.133

Fig. 4: Target predictions scores per label averaged across different UDA task domains

Fig. 5: Compactness measure on feature embeddings
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