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There has recently been increased interest in context-aware mobile sensing
applications due to the ubiquity of sensor-rich smartphones. Our DARPA-funded
Warfighter Analytics for Smartphone Healthcare (WASH) project is exploring
passive assessment methods using smartphone biomarkers and context-specific
tests. Our envisioned context-specific assessments require accurate recognition of
specific smartphone user contexts. Existing context datasets were either scripted
or in-the-wild. Scripted datasets have accurate context labels but user behaviors
are not realistic. In-the-wild datasets have realistic user behaviors but often have
wrong or missing labels. We introduce a novel coincident data gathering study
design in which data were gathered for the same contexts using both a scripted and
in-the-wild study. We then propose positive unlabeled context learning (PUCL), a
transductive method to transfer knowledge from highly accurate labels of the
scripted dataset to the less accurate in-the-wild dataset. Our PUCL approach for
context recognition outperforms state-of-the-art methods with an increase of over

3% in balanced accuracy.

arfighters face an increased exposure to
various ailments from traumatic brain
injury (TBI) to infectious diseases such as

COVID-19, which can adversely impact their long-term
health and missions. Despite this increased exposure,
warfighters are currently assessed either by health-
care providers or with intrusive and unreliable self-
reports. Both are administered too infrequently, are
inadequate, and can have result in severely negative
outcomes. For instance, there were nearly 414 000
reports of TBl among service members between 2000
and 2019' and veterans with a history of TBI are 1.55
times more likely to commit suicide.?

Given the scale of the problem, the Defense
Advanced Research Projects Agency (DARPA) has
invested in research to create smartphone-based
methods to assess TBI and infectious diseases early.?
Over 81% of US adults now own smartphone.* Their
rich sensors, processing power, programmability, and
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ubiquitous ownership make smartphones viable plat-
forms for passive, continuous assessment of the
health condition of its owner. Sensors built into smart-
phones include accelerometers, gyroscopes, light
meters, and GPS. Data from these sensors can be ana-
lyzed using machine learning for health assessment.
Prior work has demonstrated that smartphones can
be utilized to asses a variety of ailments including
depression,5 influenza,® cardiovascular disease, fall
detection, and heart failure monitoring.7

Passive health assessments often leverage sensed
digital smartphone biomarkers, which are smart-
phone-sensable user behaviors that reliably indicate
the health status and symptoms of the smartphone
user. Smartphone health biomarkers leverage ubiqui-
tous computing methods drawn from areas such as
human activity recognition (HAR) and human context
recognition (HCR).2 Smartphone health biomarkers
capture anomalous patterns in the user's behaviors,
physiological signs, activities, and context visit pat-
terns. For example, in comparison to a healthy user, a
user with influenza might become more sedentary,
spend more time lying in bed, and cough more. Cap-
turing smartphone health biomarkers relies on
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accurate and reliable HCR, which this article focuses
on. The actual health assessments will be the focus
of future work.

Context definition: We define human context as a
tuple < Activity, Prioception, App Usage, Social >.
Activity refers to the wuser's current activity
(e.g., walking, running). Prioception is the phone
placement or position on its user (e.g., in front pocket,
bag), which can affect the sensor readings.® App
usage is the category of app, the user is currently
using (e.g.,, communications app, social media), which
is predictive of human health-relevant behaviors such
sedentary levels.® Social refers to how many people
the user is currently with (e.g., alone, in public).

The problem: Existing HCR and HAR datasets have
limitations that make them unsuitable for our work.
1) Many existing HCR datasets are not large enough:
for training robust, generalizable machine learning
HCR models. This is due to the high interperson vari-
ance in human behavior, and is especially true for
deep learning, which requires millions of records for
training. 2) Datasets have either inaccurate labels or
unrealistic user behaviors: HCR datasets are collected
using study designs that are either scripted" or in-the-
wild.? Scripted studies are typically conducted in labo-
ratory setting. Participants perform scripted tasks in a
fixed, predetermined order while a smartphone app
continuously records reading from smartphone sen-
sors. Human proctors annotate the users’ data with
corresponding context labels. In unscripted (“or in the
wild") studies, data are collected for days in the real
world as subjects live their lives. A smartphone contin-
uously records smartphone sensor data continuously
as subjects live their lives. Periodically, subjects anno-
tate their data with labels of the contexts they visited.
While the scripted method for HCR data collection
yields extremely accurate and consistent labels suit-
able for the supervised machine or deep learning, the
contexts visited and sensor data collected in each
context are not representative of real life. In-the-wild
HCR studies yield more realistic data. However, some
of the context labels may be missing as users forget
to label when they get busy with their lives. Some
labels may also be wrong due to human labeling
errors."?

Thus, from a machine learning perspective, the
context labels in datasets generated by unscripted, in-
the-wild studies are weak and biased toward the spe-
cific contexts the user visited. For instance, desk
workers will have more instances of “sitting at desk”
labels than a construction worker. Bias also occurs
because certain contexts are easier to label than
others. For instance, “sitting at desk” is easier to
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label than “swimming” a hands-free activity.
The labeling quality also depends on how conscien-
tious the study subject is, which is variable. Such
poor, biased, and varied quality of context labels
pose a significant challenge for machine and deep
learning algorithms.

Prior work to mitigate the poor labeling quality:
To mitigate missing labels, some prior smartphone
data collection methods include interfaces and mech-
anisms that subjects can utilize to label batches of
past contexts retrospectively whenever they have
free time.? However, as subjects often do not remem-
ber some contexts or their start/end times accu-
rately, recall bias diminishes the quality of labels.
Finally, careless subjects may also provide many
wrong labels.”® Zeni et al." devised an interactive
machine learning framework for testing user trust-
worthiness by checking the consistency of the user
provided annotations using available ground truth.
Their work required continuous feedback from the
user, which is undesirable and focused on user
location only.

Our approach for improving the context labeling
quality: We propose methods to mitigate the above-
mentioned challenges, overcome the poor label qual-
ity, and improve deep learning HCR models. We
propose a novel coincident data collection protocol in
which data are gathered data for the same contexts
of interest using both a scripted and in-the-wild
design. We also propose positive unlabeled context
learning (PUCL) a deep learning framework that lever-
ages this coincident context datasets. The coincident
study tries to combine the accuracy of the scripted
labels with the realistic context visit patterns of the
in-the-wild studies. PUCL improves HCR model perfor-
mance on the realistic but noisy in-the-wild data using
intelligence learned from the high fidelity labeling in
the scripted dataset. Specifically, PUCL uses a trans-
ductive positive unlabeled (PU) learning methodology
to transfer knowledge from the highly accurate labels
of the scripted dataset to the less accurate, more
sparsely but yet more realistic in-the-wild dataset. Our
methodology that combines coincident data collec-
tion with PUCL outperforms state-of-the-art deep
learning HCR methods and is inspired by meta-learn-
ing approaches.’

The scope of this article: We focus on recognizing
specific contexts in which high-specificity TBI and
infectious diseases assessments can be performed on
monitored smartphone users. We refer the reader to
the background section for a more detailed descrip-
tion of our envisioned health application’s use case.
Details about the actual TBI and Infectious disease
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FIGURE 1. (a) High-level overview of this work, showing the scope of this article. (b) Our envisioned future health application, an

overview of WASH-WPI's TBI & Infectious Disease BioScore Synthesis.

assessments are also described in the background
section. For example, shaking hands (tremors) is a
common symptom of TBI and other diseases.'® If the
Warfighter Analytics for Smartphone Healthcare
(WASH) sensing application accurately recognizes a
user's context to be < *,Phone In Hand, ,* > (with
“*" denoting a wildcard), then a context-specific test
could assess whether their hand is shaking (tremors)
by analyzing data from their phone’s accelerometer
and gyroscope sensors. For infectious diseases such
as COVID, increased usage of the bathroom, coughing,
and sneezing are all symptoms that the WASH app will
assess. This article focuses only on context recogni-
tion. Research into the actual context-specific ailment
assessments is not covered. But will be explored in
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future work. In Figure 1, we show a high-level overview
of our work, in addition to the envisioned healthcare
application’s use case.

HAR and HCR Work

Our definition of context includes the user's activity
and, thus, relates to research in HAR, a well-
researched topic.R'™®® As more data have become
available, deep-learning-based HAR methods have
become popular.X® However, the majority of these
prior approaches assume that the user is only per-
forming a single activity while the phone is carried or
placed in one position on the user (e.g., in front
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pocket). Such deep learning models only predict a sin-
gle activity per data instance. In essence, they perform
multiclass classification of each instance.®®

However, in real life, users often perform multiple
activities concurrently (e.g., talking while walking) and
their phones can be placed in a variety of pockets.
More recent work such as ExtraSensory®'® and
DeepSense ** allow each data instance to be assigned
with multiple labels and the smartphone to be carried
in several possible locations (or bags/pockets). Such
work frame the HAR or HCR problem as a Multilabel
classification problem.

Context Recognition Data

Gathering Studies

Several smartphone-labeled HAR and context data-
sets have been collected for creating machine and
deep learning models and publicly released.?9R"-R13
The majority of these datasets were collected using
study designs that were mostly scripted and typically
gathered data using one or a few smartphone models
that proctors used for the study. Analyzing data from
diverse smartphones is important as prior work has
found that sensor readings for the same activity or
context can vary by up to 30% across smartphone
models. In such cases, models trained on data from
only one smartphone model does not generalize well
to other smartphones.?"

Consequently, more recent datasets such as the
ExtraSensory dataset® were gathered using a more
realistic in-the-wild study design. Participants installed
data collection apps, which collected data passively
from their smartphones and smartwatches simulta-
neously as they lived their lives. Periodically, subjects
were prompted to annotate activities and contexts
they visited using the ExtraSensory app. In addition to
being more realistic, these in-the-wild studies gath-
ered data using subjects’ smartphones that reflected
diverse manufacturer hardware. While the ExtraSen-
sory dataset came close to meeting our project’s
needs, several labels were sparse. Out of 100 labels
defined by the investigators, subjects provided labels
for only 51 contexts in 2 weeks of participation time.
Moreover, this dataset did not provide labels for all
the contexts we aimed to recognize for our infectious
disease and TBI tests.

PU Learning

In PU learning, only a subset of the dataset is labeled.
The training dataset has some labeled positive exam-
ples P and a set of unlabeled examples ¢/ that is a mix-
ture of positive and negative examples. The goal is to
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create a binary classifier that can classify previously
unlabeled instances or correct wrong labels in a test
set into the positive or negative class.R'® PU Bag-
ging™'® is an ensemble method that creates a set of
trees. Each tree is trained on a subset of the entire
training set and is used to classify the positive instan-
ces from the unlabeled instances. Next, each tree
scores all the remaining instances in the in-the-wild
dataset except the instances it was trained on. The
average prediction probability from all trees for each
in-the-wild instance is then given as the probability
that the instance is of the positive class.

Knowledge Transfer for Labeling

Sensor Data

Several semisupervised®'’?” and transfer learning
approaches®'9R?0 have previously been proposed to
tackle the issue of limited annotated sensor data.
Chen et al¥ utilized ensemble learning and majority
voting for semisupervised learning, using a similar fea-
ture generation mechanism to ours that uses atten-
tion to focus on salient regions in sensory inputs.
Recently, an opportunistic sensor data knowledge
transfer labeling mechanism was proposed, which lev-
erages computer vision mechanism to label sensor-
based instances. However, it requires the availability
of activity recorded using a camera.??® Additionally,
the generative auto-encoder-based method has been
utilized for stochastic feature generation, utilized for
cross-sensor classification of wearable data.?'® How-
ever, these prior work were applied on HAR datasets,
containing only singly labeled scripted activity data.k'™
Our work focuses instead on phone context, which
includes activity but also includes other variables
such as the phone’s placement. To the best of our
knowledge, ours is the first work to apply PU learning
on coincident scripted and in-the-wild smartphone
datasets to improve HCR performance. Our work dem-
onstrates that data collected in laboratory settings
can be used to improve performance of classifiers
designed to infer context from data gathered in the
wild. Our methods do not require the use of external
devices such as cameras for annotation purposes, or
interactive correction of wrong labels by humans.

DARPA WASH Program

The DARPA-funed Warfighter Analytics using Smart-
phone for the Healthcare (WASH) DARPA project" is
investigating passive smartphone assessment of TBI
and infectious disease. This will provide an up-to-date
assessment of the warfighter's battle readiness.
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TABLE 1. A) Summary of target contexts. we focused only on recognizing the labels corresponding to the “physical state” and

“phone prioception” subcategories of the context tuple defined early. for our experiments, we sampled data with these labels

from both the scripted and in-the-wild datasets. b) context-specific ailment tests to detect tbi and infectious diseases and

relevant human contexts.

a)

Target Contexts

Laying Down, Phone on Table Exercising, Phone in Pocket

Toilet, Phone in Pocket

Walking, Phone in

Bag
Walking, Phone in Hand Walking, Phone in Pocket Typing Sleeping
Sitting Running Laying Down (state) Standing
Talking On Phone Bathroom Phone in Pocket Phone in Hand
Phone in Bag Phone on Table, Facing Up Phone on Table, Facing Stairs - Going Up
Down
Stairs - Going Down Walking
b)
Traumatic Brain Injury
Ailment Test Test Context

Worse Reaction Time
*

>
Increased Light Sensitivity <*/inHand, *, * >
Unilateral Pupil Dilation

< Interacting with Phone, in Hand, *,

< Interacting w/ Phone, in Hand,

Texting, * >
< Interacting w/ Phone, in Hand, Video
chat, * >

Hands Shaking <* inHand, *, * >

Slurred Speech < Talking into Phone, *, *, * >

Infectious Diseases

Ailment Test Test Context

Increased Cough Frequency
Increased Sneezing

Resting Heart Rate

Increased Toilet use Frequency
Change in respiration

< Coughing, *, *, * >
<Sneezing*, *, * >

< Sitting, in Pocket, *, * >
< Using Toilet, *, *, * >

< Sleeping, on Table, *, * >

< Exercising, *, *, * >

Both TBI and Infectious Disease

Ailment Test Test Context
Increase In Activity Transition < Lying down, Phone In Pocket, *, * >
Time

< Sitting, Phone In Pocket, *, * >
< Standing, Phone In Pocket, *, * >

Change in Sleep Quality
Change in Gait

< Sleeping, *, *, * >
< Walking, Phone in
Pocket/Hand, *, * >

Target populations include active duty service mem-
bers and veterans initially but discoveries made will
also apply to civilians.

In the envisioned use case, the WASH smartphone
app will passively gather smartphone sensor data
throughout each day. Each day of data is then pushed
to the cloud overnight for analyses. In the cloud, dis-
ease inference models will analyze this data to gener-
ate a bioscore (or probability of illness) for each
warfighter.

Program phases: The WASH program is divided
into two distinct phases. Phase 1 involves recognizing
specific smartphone user contexts in which targeted
health assessments will be conducted. Phase 2
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involves creating the methods for the actual TBI and
infectious disease assessments of smartphone users.
In phase 1, we researched and created a list of smart-
phone biomarkers that were predictive of TBI and
infectious diseases and corresponding contexts. Our
team conducted user studies to collect labeled data
for those contexts and created HCR models to infer
those contexts from labeled smartphone sensor data.
Table 1(a) shows the list of contexts such as “walking,
phone in hand” that our team gathered labeled data
on and created HCR models. The planned ailment-spe-
cific tests or biomarkers corresponding to each of
these contexts is listed in Table 1(b). We created our
list of ailment tests and contexts in consultation with
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TBI and infectious disease experts from the University
of Massachusetts Medical School (UMMS). As a con-
crete example, shaking hands is a sign of TBI. In phase
one, our team conducted user studies and created
deep learning models to detect that the smartphone
user was holding their phone. In phase 2, we are focus-
ing on assessing whether the user’s hand is shaking.

Novel Coincident Context Data
Gathering Study

In our novel coincident study design approach, we
conducted both scripted and in-the-wild gathering
studies to gather labeled data in the same contexts
as described in Table 1(a). Our in-the-wild context
study was similar to the Extrasensory study
approach. The smartphone app continuously gath-
ered sensor data on 103 subjects’ phones as they
lived their lives. Users were then prompted to self-
report labels of contexts they visited. Our scripted
study was conducted in a specific laboratory, build-
ings, or routes on our campus. The smartphone app
collected data from 100 participants that visited the
listed contexts in Table 1(a) in a scripted fashion. The
scripted data-gathering session lasted approximately
1 h per subject, and human proctors oversaw and
manually annotated the data. Both datasets (scripted
and in-the-wild) were preprocessed and featurized
using the same approach detailed in the paper by
Alajaji et al."® Segments were generated using a win-
dow size of 10 s and contexts were handled as multi-
label vectors. Each context was assigned a binary
label (e.g., walking versus not walking). For our pro-
posed methods to work, it is required that both data-
sets have the same number of binary classes.

Background: Types of Supervised
Learning

In supervised learning tasks such as classification and
regression, predictive models are trained on anno-
tated training examples. A training example is com-
prised of an input feature vector (or instance) and an
associated label (or ground-truth). Weak (or inaccu-
rate) labels can occur, requiring innovative learning
methods. There are three categories of weakly super-
vised learning: 1) Incomplete supervision: utilizing unla-
beled training data; 2) Inexact supervision: only
coarse-grained labels are provided; and 3) Inaccurate
supervision: where the labels are not always true.' In
many practical scenarios such as in our in-the-wild
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HCR study, it is challenging to gather an adequate
amount of high-quality labels for fully supervised
learning due to the high costs of gathering labeled
data. Consequently, learning methods that can be
trained under weak supervision are desirable.” In this
work, we try to improve the accuracy of recognizing
the inexact and weakly supervised in-the-wild context
data using a PU learning approach to learn the correct
labels of data instances that have wrong or missing
labels from labels in the scripted (supervised) data.
We use a regularization technique inspired by meta-
learning approaches. Meta-learning is a subfield of
machine learning focusing on learning from prior expe-
rience." Specifically, we are inspired by the dual meta-
learner & learner techniques, leveraging meta knowl-
edge from a supporting set with highly accurate
labeled dataset. This guides the learning process on
the main learning task on the weakly labeled data-
set.”® Our approach is similar to the paper by Dehghani
et al.® in leveraging prior knowledge from a highly
accurate labeled dataset.

Challenges: Two major challenges arise, which
must be addressed. In our in-the-wild dataset, the
labels are extremely noisy, inaccurate, and sparse.
Second, it is challenging to devise a robust methodol-
ogy for transferring knowledge from the scripted data-
set to the much noisier, yet more true-to-life, in-the-
wild dataset. Specifically, discovering the most likely
true labels of mislabeled or unlabeled scripted data is
a very challenging problem.

Positive Unlabeled (PU) Context
Learning (PUCL): A Novel Learning
Methodology

To tackle the abovementioned challenges, we pro-
pose Positive Unlabeled (PU) Context Learning
(PUCL), a novel learning methodology that has two
stages and is depicted in Figure 2. In the first stage,
we utilize a PU classifier with our correctly labeled
scripted dataset to correct inexact or coarse labels
in our in-the-wild context dataset. In the second
stage, we train DeepContext, our novel deep learn-
ing architecture, on the in-the-wild dataset with
labels that have been corrected by our PU method
during the first stage. We now describe the two
stages of PUCL in more detail.

Stage 1: Correcting the In-the-Wild
Labels

In this stage, PUCL tries to learn reliable label-feature
mappings from the more reliable scripted dataset,
allowing us to discover incorrect or missing labels in
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FIGURE 2. Diagram for our positive unlabeled context learning (PUCL) showing a) PU learning for coincident scripted and in-the-
wild HCR. A PU learner is fit to identify (+) and (—) instances in the WASH In-the-wild dataset. C1 instances are relabeled as posi-
tives due to their proximity to positively labeled instances of WASH Scripted Context Dataset in feature space2). C2 instances
are relabeled as negatives due to their distance from positive instances of the WASH Scripted Context Dataset. b) DeepContext
HCR model is trained using the pseudolabels generated as a correcting factor.

the in-the-wild dataset. For each class Y that is pres- While our approach is flexible enough to utilize any
ent in both the scripted and in-the-wild dataset, let P PU learning method, we use the PU Bagging algorithm
be the positively labeled instances of that class in the as our classifier. After running the PU Bagging algo-

scripted dataset. Let &/ be the entirety of the in-the- rithm, all in-the-wild instances would have now been
wild dataset. We then train a probabilistic PU classifier associated with a probability of belonging to the posi-
fou to predict Pr(Y = 1|x € U). tive class. In addition to guessing the labels of
56 |IEEE Pervasive Computing January-March 2021
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unlabeled instances, our PUCL method can also cor-
rect wrongly labeled instances in the in-the-wild data-
set. Positive instances that are wrongly labeled as
negative can be identified because the PU bagging
algorithm will assign them a score that indicates that
they have a high probability of belonging to the posi-
tive class. Conversely, negative instances that are
wrongly labeled as positive will have a score assigned
by the PU bagging algorithm, which indicates that
they have a low probability of belonging to the posi-
tive class.

Building on this intuition, we formulate and esti-
mate a correcting factor that corresponds to how
much an assigned label in the in-the-wild dataset
should be trusted. For each class, e.g., “walking,” let y;
be the label of that class associated with the ith
instance in the in-the-wild dataset and let PU; be the
PU Bagging score for the class associated with that
instance. Then, the correcting factor CF; is given as
follows:

CF,‘ =1- ‘y, — PU,‘

If PU; is large while y; = 0, or if PU; is small while y; =
1, then CF; will be close to 0. This means that the label
associated with the ith instance should not be trusted.

Stage 2: Context Recognition Using
DeepContext

The goal of this stage is to train a robust context clas-
sifier, DeepContext,”® a novel deep learning based
architecture for multilabel recognition of a smart-
phone user's current context. Utilizing an attention
mechanism, DeepContext is able to autonomously
learn salient features that discriminate contexts, while
suppressing potentially irrelevant parts of the input.

We adapt DeepContext, our proposed context clas-
sification model but additionally we utilize PUCL to
mitigate the negative impact of the inaccurate and
missing labels in the in-the-wild dataset. Specifically,
DeepContext uses the correcting factor in stage 1 to
improve its classification results on the in-the-wild
dataset. DeepContext takes as input both hand-
crafted-features generated using domain knowledge
as well as the raw-sensor values collected by the
smartphone. Furthermore, DeepContext utilizes state-
of-the-art attention mechanisms to focus on subcom-
ponents of the input data that are most predictive of
each target class.

Classification accuracy is boosted as the noise
present in each input is ignored. In particular, Deep-
Context is trained using gradient descent on its
parameters (denoted as ©) on the inexact and weakly
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labeled in-the-wild data by minimizing the following
cost function:

where N is the number of training samples and /4y is
the loss function that is weighted by the correcting-
factor. More specifically,

by = XN: (%(y) + CF,gy)

yeY i=1

- yilog(f(xi) + (1 - yi)log (i — f(xi))].

More intuitively, ¢y is simply the cross entropy loss (or
any other deep learning loss function) multiplied by a
weighting factor. The weighting factor is a combination
of the inverse class frequency with the correcting factor.
In order to account for class imbalance, the weighting
factor weights instances of infrequent classes higher
than instances of frequent classes and discounts the
cost incurred from instances that are likely to have been
mislabeled by the annotator. This discounting is applied
so as not to punish the network for disagreeing with
annotator-assigned labels that are probably wrong.

Context Recognition Results

We compared our model performance against state of
the art for HCR (ExtraSensory MLP?), which has been
applied for very similar dataset to ours. Due to class
imbalance in our context datasets, we utilize Balanced
Accuracy (BA) as the metric to evaluate the context
recognition performance of DeepContext and our
novel PUCL method. BA is defined as follows:

1/ TP ™
BAD) =3 (TP TENTINT FP)

which is also

BA(D) = - (Sensitivity + Specificity).

N| —

Our results described in Table 2(a) demonstrate that
our approach outperforms the state-of-the-art model
on all metrics except recall with lower false positive
rates. We speculate that the drop in recall may be due
to the amount of mislabeled annotated true positives.
Intuitively, the PU Correcting Factor will put less atten-
tion on instances that are most likely mislabeled. It
would then be expected that the true positive instances
will be classified with a higher consistency using guided
knowledge gathered from the scripted dataset. Table 2
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TABLE 2. Comparison of our results with state-of-the-art methods.

a) Results overall

Model BA Recall Precision  Specificity =~ Fl-score
ExtraSensory MLP 0.780,161 0.781,946 0.339,242  0.778377  0.472944
PU Context Learning (PUCL) 0.813,777 0.713,059 0.551,373 0.914,494 0.621,843
b) Results per label

Label ExtraSensory  PU Context Learning

Phone on Table, Facing Down  0.8416 + 0.014 0.8707 + 0.011

Stairs - Going Down 0.8051 + 0.012 0.8429 + 0.011

Sleeping 0.8294 + 0.002 0.8419 + 0.005

Stairs - Going Up 0.8141 + 0.002 0.8414 + 0.005

Laying Down, Phone on Table ~ 0.7913 + 0.018 0.8204 + 0.010

Phone in Bag 0.7924 +0.018 0.8024 + 0.010

Phone in Pocket 0.7878 + 0.014 0.7994 + 0.016

Typing 0.7736 + 0.033 0.7945 + 0.008

Walking, Phone in Bag 0.7763 + 0.010 0.7910 + 0.007

Walking, Phone in Pocket 0.7740 + 0.008 0.7895 + 0.010

Phone one Table, Facing Up 0.7563 + 0.011 0.7888 + 0.015

Walking 0.7602 + 0.003 0.7796 + 0.003

Exercising, Phone in Pocket 0.7532 £ 0.025 0.7711 £ 0.012

Laying Down 0.7410 + 0.021 0.7701 + 0.009

Walking, Phone in Hand 0.7519 + 0.006 0.7654 + 0.010

Sitting 0.7408 + 0.008 0.7577 + 0.018

Running 0.7551 + 0.058 0.7539 + 0.029

Phone in Hand 0.7436 + 0.009 0.7512 + 0.016

Bathroom, Phone in Pocket 0.7246 + 0.019 0.7476 + 0.010

Jogging 0.7720 + 0.145 0.7437 £ 0.175

Exercising 0.7185 + 0.037 0.7429 + 0.008

Jumping 0.7176 + 0.004 0.7260 + 0.002

Standing 0.7037 + 0.010 0.7256 + 0.002

Bathroom 0.6614 + 0.024 0.6957 + 0.004

(b) presents performance per label, showing that our
approach consistently outperforms state-of-the-art
methods across all labels, except Running and Jogging.
As it can be seen in the results, Running and Jogging
have the highest variability scores among user splits.
The poor performance on Running and Jogging can be
resulted from the increased noise resulted from such
activities. Figure 3(a) and (b), we compare confusion
matrices showing that our approach achieves consis-
tent improvements over other state-of-the-art methods
in detecting phone prioception (placement). Last, in
Figure 3(c), we evaluated the impact of the proposed
PUCL mechanism on both DeepContext and ExtraSen-
sory MLP. We show that utilizing the PU Correcting fac-
tor during training, we achieved a significant increase in
the BA of classification in our evaluation on both learn-
ing models: ExtraSensory MLP and our proposed model
DeepContext.

The Warfighter Analytics using Smartphone for Health
(WASH) DARPA project is exploring smartphone

IEEE Pervasive Computing

sensing methods to passively assess the TBI and
infectious disease status of active duty service mem-
bers and veterans. Findings in the program will likely
be useful for also assessing civilian populations. In
this work, we introduced a novel PUCL approach for
applying transductive PU learning on coincident
scripted and in-the-wild HCR datasets. In future work,
we plan to exploit unsupervised joint feature and label
representation methods to further improve the accu-
racy on this challenging task. Moreover, one of the
additional steps, we could do to improve our PUCL
approach is to consider the amount of the introduced
bias due to the different data distributions in both
scripted and in the wild datasets. We plan to explore
the limitations of our PUCL approach to such coinci-
dent data gathering study design. Finally, we are also
researching the passive biomarker and health tests
for TBI and infectious diseases.

This work was supported in part by the Computer
Science Department at Worcester Polytechnic
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FIGURE 3. (a) and (b) Confusion matrices for phone prioception, with normalized scores. (c) Impact of PU correcting factor on

the used learning method.
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