Advanced Computer Graphics
CS 563: Acceleration Algorithms

Frederik Clinckemaillie

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Problem with Z-buffer

e Using Z-buffer can cause pixels to be overwritten
several times.

e High depth complexity

depth complexity rendered imoge

Occlusion Culling

e Attempts to cull away occluded objects

e Removes objects from scene before going
through pipeline
e [ypes:

Point-based
Visibility calculated from single point

Cell-based

Visibility calculated for all points in view cell
Can be reused for a few frames

o000
X
L X J
o

Occlusion Culling

1: OcclusionCullingAlgorithm (G)

2: Og=empty

3: P =empty

4: for each object gin G

> if(isOccluded(g,Og)) P:set of potential occluders

6 Skip(g) G: Objects in the scene

7: else O,:occlusion representation

8: Render(g)

9: Add(g,P)

10: if(LargeEnough(P))

11: Update(O,, P)

12: P =empty

13: end

14: end
15: end

Hardware Occlusion Queries

e Occurs in image space

e Bounding volume polygons are tested against z-
buffer

e Count of number of pixels n in which polygons
are visible is returned
n = 0: polygon is occluded
N is small: May be discarded
N can determine LOD

e Performance: 100% increase in speed.

Other Hardware Occlusion T
Techniques

e MeiBner et Al.

Uses occlusion queries with hierarchical data structure

Nodes are sorted in front-to-back order before
occlusion testing

e Klosowski and Silva
Developed a constant-frame-rate algorithm
Prioritized-layered projection
Estimated visible polygons of a scene incrementally
Not a conservative algorithm

Other Hardware Occlusion
Techniques

e Sekulic
e Took advantage of temporal coherence
e Results of occlusion are checked one frame later
e Visible objects are rechecked every few frames

Issues with Occlusion Culling

e Using occlusion algorithms can cost time if
everything is visible
Cutting algorithm back if it is not helping
Statistical methods help determine usefulness

e Determining occluders

Hierarchical Z-buffering

e Scene modelis held in octree

e Objects in scenes are divided into 2x2x2 smaller boxes
if the number of primitives exceeds a certain number

e Best for static scenes

e /-buffer maintained as a Z-pyramid

e Each z value is the farthest z in 2x2 window of
previous level
3 3 03 i
2 e |Yerap

q q
v v v

0 0 (

SEE O |

Hierarchical Z-buffering

Hierarchical Z-buffering

e Octree is traversed in front-to-back order

e Bounding box of the octree is tested against Z-
pyramid

Begin at coarsest Z-pyramid cell that encloses the
box’s screen projection

If nearest depth(z is farther, box is occluded

near)

Else, finer level of Z-pyramid is used

e If Octree node is visible, child nodes are
examined.

Hierarchical Z-buffering

farthest farthest
value value

I N el 7 O B [

o
2
(S

2
O
9
O
o

O
(S
2

Other Occlusion Culling Algorithms

e Hierarchical Occlusion Map
e Offers approximate occlusion culling

e Opacity threshold
Used at each level of hierarchical depth buffer
Objects are culled if too little of them are visible

e Number of Occluders is limited
Creation of HOM can be bottleneck

W256 OM 1: 128x]2 OM 2: 64x64 viewer

lalala

Other Occlusion Culling Algorithms

e Occlusion Horizons
e Used to render urban or mountain scenes

e Scenes are rendered front to back and the horizon
drawn is tracked

e Algorithm is point based

Level of Detail

e Use simpler versions of objects if they make
smaller contributions to the image

e LOD algorithms have three parts:
Generation: Models of different details are generated

Selection: Chooses which model should be used
depending on criteria

Switching: Changing from one model to another

e Can be used for models, textures, shading and
more

Level of Detail

LOD 0 - 5218 tris

LOD 2 - 1804 tris

LOD 3 - 550 tris
FE!_.'.UHE 14.21. On the left, the original model consists of 1.5 million triangles. On the
right, the model has 1100 triangles, with surface details stored as heightlield textures and
rendered using relief mapping. (fmage courtesy of Natalya Taetarchuk, ATT Research,
Ine.)

LOD Switching

e Discrete Geometry LODs

LOD is switched suddenly from one frame to the next
e Blend LODs

Two LODs are blended together over time

New LOD is faded by increasing alpha value from O to 1
More expensive than rendering one LOD

Faded LODs are drawn last to avoid distant objects
drawing over the faded LOD

LOD Switching (cont.)

e Alpha LOD

Alpha value of object is lowered as distance increases
Transparent objects are not sent through pipeline
Experience as much more continuous

Performance is only felt when object disappears

Requires sorting of scene because of transparency

LOD Switching (cont.)

e CLODs and Geomorph LOD
Edges can be collapsed as distance increases

Process is reversible (vertex split) if deleted vertices
are stored

Number of polygons can be based on distance
(Continuous Level of Detail)

Geomorph LODs: a set of discrete models created by
simplification with connectivity of vertices maintained

Smooth transitions can be done between Geomorph
models

CLODs and Geomorph LODs

(a) Base mesh M" (150 faces) (b) Mesh M'™ (500 faces) (c) Mesh M** (1.000 faces) (d) Original M=M" (13.546 faces)
Figure 5: The PM representation of an arbitrary mesh M captures a continuous-resolution family of approximating meshes M" ... M" =M.

(a) oo = 0.00 {(bya =0.25 (c) o =050 (d) o =075 ey = 1.00
Figure 6: Example of a geomorph M%(a) defined between ME(0)=M"" (with 500 faces) and M“(1)=M** (with 1,000 faces).

LOD Selection

e Determining which LOD to render and which to
olend

e Range-Based:
e LOD choice based on distance

LOD (53

{_‘i . y . - node
x |- |1
_—

e @ A (@] [®] [a

LOD Selection T

e Projected Area-Based
e Estimates the projected area of the bounding volume
e Estimating Screen-space coverage: -

I .
For spheres, estimation of radius is : d-(c—v)

= Distance is the projection of the sphere center onto the view
vector (d *(c-v))

= n:distance from the viewer to the near plan of the view frustum

LOD Selection

e Hysteresis

Popping can occur if the metric varies from frame to
frame

Example: different increasing and decreasing r values

Time-Critical LOD Rendering

e Using LOD to ensure constant frame rates
e Predictive algorithm
e Selects the LOD based on which objects are visible

e Heuristics:
e Cost(O,L)
e Benefit(O,L)
e Maximize Benefit(0.L)

o Int:
Constralnt Z Cost(0, L) < TargetFrameTime.

Estimating the Heuristics.

e Do not work in all cases

e Benefit function
Methods mentioned earlier
In practice: projected area of BV.

e Cost function
Time of LODs with different viewing parameters

Time-Critical LOD: Choosing the
LODs

e All models have a simplest LOD with no
primitives
Handles the case of too complex scenes
Allows focus on rendering important objects

e Problem is NP-Complete.

e Greedy algorithm to maximize Value
(Benefit/Cost)

e Algorithm runs in O(nlog n)
N: # of objects in view

Point Rendering

e Use points as primitive

e Render surfaces as large
sets of points

e Gaussian filter pass to fill

gaps
Radius of Gaussian filter
determined by point
density

Point Rendering

e Points are rendered as
splats

e Shapes with a set radius

May be square, circles, or
fuzzy spheres

e Useful when triangles
cover less than one
pixel in view

e Can import real world
objects

Point Rendering

Figure 14.31. These models were rendered with point-based rendering, using circular
splats. The left image shows the full model of an angel named Lucy, with 10 million
vertices. However, only about 3 million splats were used in the rendering. The middle
and right images zoom in on the head. The middle image used about 40,000 splats during
rendering. When the viewer stopped moving, the result converged to the image shown
to the right, with 600,000 splats. (Images generated by the QSPlat program by Szymon

Demo

e http://www.youtube.com/watch?v=VgnNgBwIz6
C

e http://www.youtube.com/watch?v=0Rswin2M-
F4

References

e Akenine-Moller, T et Al. “Real Time Rendering”. AK Peters Ltd 2008,
Natick MA.

e Mario Botsch and Leif Kobbelt. 2003. High-Quality Point-Based Rendering
on Modern GPUs. In Proceedings of the 11th Pacific Conference on
Computer Graphics and Applications (PG '03). IEEE Computer Society,
Washington, DC, USA, 335-.

