Advanced Computer Graphics
CS 563: Curves and Curved Surfaces

William DiSanto

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Overview

- Advantages/Disadvantages
- Implicit Surfaces
- Parametric Paths
- Parametric Surfaces
- NURBS
- Demos
Why Use Curves?

- Compact Representation
 - Control Points, Knots, Weights
- Usually Scale/Rotation/Translation Invariant
- Smooth well Defined Derivatives
 - Good for paths
- Curves can represent triangle mesh exactly
- Support surfaces of arbitrary dimension
Disadvantages to Curved Surfaces

- Can be difficult to implement
- Expensive to render
- Hard to fit
- Few SW packages support diverse features needed
- Often reduced to tri-mesh anyway
- Subdivision surfaces may suffice
- Extraordinarily unintuitive to manipulate
 - Hard for artists to edit in a precise manner
 - Some artists prefer since its reliably scalable (scan in)
Implicit Surfaces

\[f(x, y, z) = x^2 + y^2 + z^2 - 1 \]

\[f(p) = \sum_{i=0}^{n-1} h(r_i) \]

\[h(r) = \left(1 - \frac{r^2}{R^2}\right)^3 \]
Parametric Curves

- Each coordinate is expressed as an explicit function of some independent parameters

\[p(t) = p_0 + t(p_1 - p_0) = (1 - t)p_0 + p_1 \]
Bézier Curves

- Curves from repeatedly linear interpolation on control points
- Curve will have continuity = # of control points – 2
- Can be expressed as a recurrence over control points

\[p(t) = (1 - t)d + te = (1 - t)[(1 - t)a + tb] + t[(1 - t)b + tc] = (1 - t)^2a + 2(1 - t)tb + t^2c \]

Quadratic Curve from Control Points \((a,b,c)\), \(t = 1/3\)
Bézier Curves

- Curves tend to remain in the convex hull of the control points
- Notice the entire curve is effected by every single control point
 - Except for position at \(t = 0.0 \) and \(t = 1.0 \)
de Casteljau Algorithm

- Generate a tree of linear interpolation points originating from the point on the curve at time t

$$p_i^k(t) = (1 - t)p_i^{k-1}(t) + tp_i^{k-1}(t) \quad \{k = 1 \ldots n, i = 0 \ldots n - k\}$$
Bernstein Polynomials

- Algebraic Form for Bézier Curve

\[
p(t) = \sum_{i=0}^{n} B^n_i(t) p_i
\]

\[
B^n_i(t) = \binom{n}{i} t^i (1 - t)^{n-i}
\]

\[
p(t) = B^2_0 p_0 + B^2_1 p_1 + B^2_2 p_2
\]

\[
= (1 - t)^2 a + 2(1 - t)t b + t^2 c
\]

Same as before
Bernstein Polynomials

- Polynomials can be pre-computed and used later.
- Binomial coefficient may make solution unstable for large numbers of control point.

\[B_i^n(t) = \binom{n}{i} t^i (1 - t)^{n-i} \]
Rational Bézier Curves

- Use weighted ratio of Bernstein Polynomials
- Rational Functions Allow for representation of conic curves
 - Example: Unit Circle

\[
x(u) = \frac{1 - u^2}{1 + u^2}, \quad y(u) = \frac{2u}{1 + u^2}
\]

Can find weights by substitution

\[
p(t) = \frac{\sum_{i=0}^{n} w_i B_i^n(t) p_i}{\sum_{i=0}^{n} w_i B_i^n(t)}
\]

Quadrant of unit circle represented with Bézier Curve
Homogenous Coordinates

- View Rational Polynomial as n-dimensional non-rational polynomial projected into n+1 dimensional space
 - Perspective projection looking down the n+1th dimensional axis
 - Project onto W = 1
- Computationally efficient representation

\[
X(u) = \sum_{i=0}^{n} B_{i,n}(u) w_i x_i \quad Y(u) = \sum_{i=0}^{n} B_{i,n}(u) w_i y_i \quad W(u) = \sum_{i=0}^{n} B_{i,n}(u) w_i
\]
Bézier Curves on GPU (filled)

- Map control points to canonical texture space
- Texture coordinates are interpolated on hardware
- Test per-pixel texture coordinates against algebraic expression of the curve to shade
Piecewise Bézier Curves

- Curves can be joined together
 - Edge control points must match
 - Internal points must be positioned to preserve continuity

\[C_0 \quad G_1 \text{(Tangent DirectionMatch)} \quad C_1 \]
Cubic Hermite Interpolation

- Spline controlled by 2 control points and 2 tangents
- In general values and some derivatives at sample points must be known

\[p(t) = (2t^3 - 3t^2 + 1)p_0 + (t^3 - 2t^2 + t)m_0 + (t^3 - t^2)m_1 + (-2t^3 + 3t^2)p_1 \]

\[\frac{\partial p}{\partial t} (0) = m_0 \quad \frac{\partial p}{\partial t} (1) = m_1 \]
Kochanek-Bartels Curves

- Stitch together Cubic Hermite splines
 - Tension parameter (controls pinching at point)
 - Bias parameter (biases hump before/after i^{th} point)
 - No tension and no bias produces Catmull-Rom spline
Kochanek-Bartels Curves

- Can define both input and output tangents per point
- Another parameter (continuity)
 - Determines how much in/out tangents agree
 - Can be used to make sharp corners

\[m_i = \frac{(1-a)(1+b)(1-c)}{2} (p_i - p_{i-1}) + \frac{(1-a)(1-b)(1+c)}{2} (p_{i+1} - p_i) \]

\[a = \text{tension} \quad b = \text{bias} \quad c = \text{continuity} \]
Bézier Patches

- Bi-linearly Interpolate between control points

\[p(u, v) = (1 - u)(1 - v)a + u(1 - v)b + (1 - u)v c + uv d \]
Bézier Patches

\[p_{i,j}^k = (1 - u)(1 - v)p_{i,j}^{k-1} + u(1 - v)p_{i,j+1}^{k-1} + (1 - u)v p_{i+1,j}^{k-1} + uv p_{i+1,j+1}^{k-1} \]

Generate Interpolation Points within Quads
Bernstein Patches

\[p(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) B_j^n(v) p_{i,j} \]

Different Degrees in each Dimension Possible
Derivatives

- Derivatives and normals well defined

\[
\frac{\partial p(u, v)}{\partial u} = m \sum_{j=0}^{n} \sum_{i=0}^{m-1} B_i^{m-1}(u) B_j^n(v) \left[p_{i+1,j} - p_{i,j} \right]
\]

\[
\frac{\partial p(u, v)}{\partial v} = n \sum_{i=0}^{m} \sum_{j=0}^{n-1} B_i^m(u) B_j^{n-1}(v) \left[p_{i,j+1} - p_{i,j} \right]
\]

\[
n(u, v) = \frac{\partial p(u, v)}{\partial u} \times \frac{\partial p(u, v)}{\partial v}
\]
Bézier Patches

- Below: Control points, connected points and normals sampled from the patches, and a render of the computed quads
Bézier Patches

Manipulation of Control Points
Rational Bézier Patches

- Surface still contained within convex hull

\[p(u, v) = \frac{\sum_{i=0}^{m} \sum_{j=0}^{n} w_{i,j} B_i^m(u) B_j^n(v) p_{i,j}}{\sum_{i=0}^{m} \sum_{j=0}^{n} w_{i,j} B_i^m(u) B_j^n(v)} \]
Bézier Triangles

- Interpolate with barycentric coordinates

\[p(u, v) = (1 - u - v)p_0 + up_1 + vp_2 \]
Bernstein Triangles
Bézier Triangle: Representations

- **de Casteljau**
 \[p_{i,j,k}(u, v) = u p_{i+1,j,k}^{l-1} + v p_{i,j+1,k}^{l-1} + (1 - u - v) p_{i,j,k+1}^{l-1} \]

- **Bernstein**
 \[p(u, v) = \sum_{i+j+k=n} B^n_{ijk}(u, v) p_{ijk} \]
 \[B^n_{i,j,k}(u, v) = \frac{n!}{i!j!k!} u^i v^j (1 - u - v)^k \text{ where } n = i + j + k \]

- **Derivatives**
 \[\frac{\partial p(u, v)}{\partial u} = \sum_{i+j+k=n-1} B^n_{ijk}^{-1}(u, v) p_{i+1,j,k} \]
 \[\frac{\partial p(u, v)}{\partial v} = \sum_{i+j+k=n-1} B^n_{ijk}^{-1}(u, v) p_{i,j+1,k} \]
N-Patches

- Generate smooth LOD mesh with N-Patches
 - Each triangle generate 4 internal triangles
N-Patches

- Quadratic interpolation of normals used to handle inflections
Continuity

- When connecting Bézier patches, points next to the boundary must be collinear to preserve C_1 continuity.
Continuity

Discontinuous Continuous
Continuity

- G_1 continuity if points adjacent to shared corner lie in a plane
- At patch corners vertical and horizontal control points must be spaced at equal ratios for C_1
Basis-Splines

- Offer Local Control
- Can be expressed as Bézier curves
- Suppress Error for many control points
- Continuity controlled for any number of points*

\[
f(p) = \sum_{i=0}^{m-n-2} p_i N_{i,n}(t)
\]

\[
N_{i,0}(t) = \begin{cases}
1, & t_j \leq t < t_{j+1} \\
0, & \text{else}
\end{cases}
\]

\[
N_{j,n}(t) = \frac{t-t_j}{t_{j+n}-t_j} N_{j,n-1}(t) + \frac{t_j+n+1-t}{t_{j+n+1}-t_{j+1}} N_{j+1,n-1}(t)
\]

\[
\text{where } m-n-1 = \text{number of control points}
\]
Knot Vectors

- Describe set of basis functions (from Cox-de Boor)
- Knot values can be repeated to reduce the span of a basis function
- Need not be integer valued

\[U = \{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5\} \]
Knot Vectors: Non-Uniform Example

\[U = \{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5\} \]
NURBS

- Knot vectors can take on values that are not uniformly spaced
- Use Rational B-Splines
NURBS Texturing

- Map parameters to texture [0,1]
- texcpts = [0, 0, 0, 1, 1, 0, 1, 1]

```c
gluBeginSurface(globj);
gluNurbsSurface(globj, 4, U, 4, V, 4, 2, texcpts, 2, 2,
    GL_MAP2_TEXTURE_COORD_2);
gluNurbsSurface(globj, n + p + 1, U, m + q + 1, V, 3
    m, 3, cpts, p + 1, q + 1, GL_MAP2_VERTEX_3);
gluEndSurface(globj);
```
Some Demos

Run Demos
References

- *NURBS Textures, Peter Salvi, June 30, 2008*