Advanced Computer Graphics CS 563: *Project Proposal*

William DiSanto

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Real-time Simulation of Large Bodies of Water with Small Scale Details

- Eurographics 2010 :
 - Nuttapong Chentanez and Matthias Müller
 - NVIDIA Corporation
- Combination of mesh grid and particle simulation of surface water
- Render particles in an efficient manner

- Height field fluid simulation
- Solids simulation
- Two-way coupling of height field and solids
- Particles generation and simulation
- Rendering

- Conservative expressions for mass and momentum over a regular 2D grid
- Boundary nodes can be marked for reflection or absorption

Part II: Solids Simulation

- This part was handled by some existing physics engine
- Might use Bullet Physics
- Easy to use / decent performance
- Will only use for particle static and field mesh interaction

Part III: Solids – Fields Fields - Solids

- Compute interactions of the field with static and dynamic objects
- Simultaneously compute forces/displacements in both directions
- Will not be included in this implementation
 - More of an animation focus

Part IV: Particles

- Generated when the mesh grid cannot support water behavior
 - Discontinuities in height (waterfalls)
 - Waves breaking
 - Foam

- Use tiled FFT to perturb surface height and normals
- Render particles as point sprites
- Render most in screen space, as spheres
 - Splats contain spherical density/depth information

Density

FFT

Most Critical Components

- Include:
 - Height field fluid simulation with boundary conditions
 - Some particle effects
 - Rendering

	Boat	WaterF	PML	Beach	Ocean
Grid	900x135	128x128	128x128	128x128	256x256
Par	250K	56K	2K	220K	83K

• Exclude:

- Fields Solid interaction
- Solid Fields interaction (might include)
- Exotic particle effects

Optimistic Timeline

- Week 1: Fields Simulation + Integrate Physics Engine
- Week 2: Boundary Conditions + FFT
- Week 3: Particle Effects + SS Rendering
- Week 4: Final Presentation

Progress

- Partial Integration of Bullet Physics Engine
- Partial Implementation of conservative fields

References

- Nuttapong Chentanez, Matthias Müller, Real-time simulation of large bodies of water with small scale details, Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 02-04, 2010, Madrid, Spain
- http://www.youtube.com/watch?v=bojdpqi2l o

References

- Wladimir J. van der Laan, Simon Green, Miguel Sainz, Screen space fluid rendering with curvature flow, Proceedings of the 2009 symposium on Interactive 3D graphics and games, February 27-March 01, 2009, Boston, Massachusetts
- http://developer.download.nvidia.com/presentation s/2010/gdc/Direct3D Effects.pdf