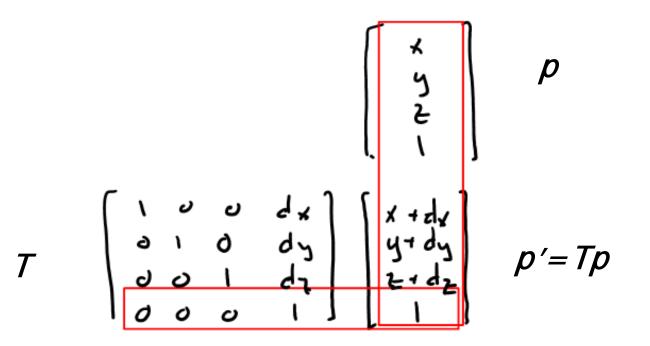
CS 563 Advanced Topics in Computer Graphics *Transforming Objects – Chapter 21*

by Wadii Bellamine

Outline

- Review of Affine Transformations
- Intersecting Transformed objects
- Instancing
- Beveled Objects

3D Homogenous matrix transformations



Translation:

$$T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$T(d_x, d_y, d_z)[x \ y \ z \ 1]^T = [x + d_x \ y + d_y \ z + d_z \ 1]^T$

• Scaling:

$$S(a,b,c) = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$S(a, b, c)[x y z 1]^{T} = [ax by cz 1]^{T}$

Rotation:

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$R_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$R_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
(Suffern, 406)

Inverse transformations:

	Rotation.	[1	0 0)	[0
	Rotation. $R_{\rm x}^{-1}(\theta) =$	0 co	$\sin \theta = \sin \theta$	θ	0
Translation. $\begin{bmatrix} 1 & 0 & -d_x \end{bmatrix}$	$\mathbf{R}_{\mathbf{x}}$ (0) =	0 -s	$in\theta$ cos	$s\theta$	0 1
$T_{-1}^{-1}(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & -d_x \\ 0 & 1 & 0 & -d_y \\ 0 & 0 & 1 & -d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}.$					
$0 \ 0 \ 1 \ -d_z$		$\cos\theta$	0 – sin	θ	0]
	$R_{\rm y}^{-1}(\theta) =$	0	1 0		0
Scaling.	Ry (0) -	$\sin \theta$	0 cos	θ	0 /
$S^{-1}(a, b, c) = \begin{bmatrix} 1/a & 0 & 0 & 0 \\ 0 & 1/b & 0 & 0 \\ 0 & 0 & 1/c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$		-			1
$S^{-1}(a, b, c) = \begin{bmatrix} 0 & -1/c & 0 \\ 0 & 0 & 1/c & 0 \end{bmatrix}$		$\cos\theta$	$\sin heta$	0	[0
	$P^{-1}(0) =$	$-\sin\theta$	$\cos\theta$	0	0
	$K_z(\theta) =$	0	0	1	0
	$R_z^{-1}(\theta) =$	0	0	0	1

(Suffern, 412)

Intersecting Transformed Objects

- Problem Setup:
 - We have a transformed object or primitive, and want to calculate the hit point(s) with the ray, and the normal to the object at that hit point.
 - Problem: How exactly can we do this without complicated arithmetic?
 - Solution: Transform the ray instead of the object! (so that we can take advantage of a simple closed form solution)

Intersecting Transformed Objects

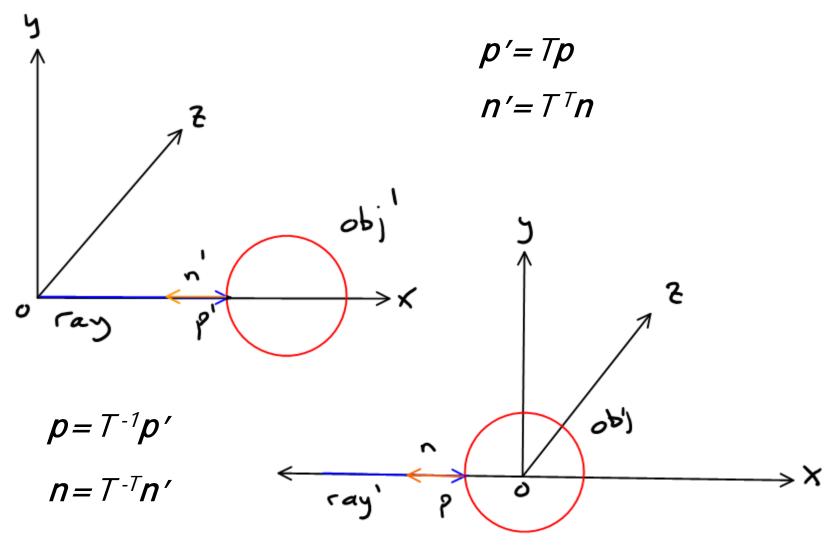
• Five steps:

T*Object = Object' T⁻¹*ray = ray' (=> means result)

- Compute inverse transformation matrix of the transformed object, and apply this to the ray, to obtained an inverse transformed ray => ray'
- Compute hit point of ray' and untransformed object Object => p
- 3. Compute normal to object at $\mathbf{p} => \mathbf{n}$
- Apply T to p to obtain hit point of ray and
 Object' => p'
- 5. Apply **T** to **n** to obtain normal to **Object'** => **n'**

Intersecting Transformed Objects

Simple illustration of procedure: Sphere



Computing ray': (blue = unknown)

ray => p' = o + tdp' = Tp $p = T^{-1}p'$ $p = T^{-1}p' = T^{-1}o + tT^{-1}d$ $T^{-1}o = o'$ $T^{-1}d = d'$ p = o' + td' => ray'

- Computing t: Simple sphere example
 - Unit sphere centered at origin:

$$x^2 + y^2 + z^2 = 1$$

Equation of ray':

$$p = o' + td' = \begin{bmatrix} o_x + td_x \\ o_y + td_y \\ o_z + td_z \end{bmatrix}$$

• Combining the two equations, solve for t:

$$(o_x + td_x)^2 + (o_y + td_y)^2 + (o_y + td_y)^2 = 1$$

Computing o' and d':

$$\boldsymbol{o}' = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} o_{\mathrm{X}} \\ o_{\mathrm{y}} \\ o_{\mathrm{z}} \\ 1 \end{bmatrix}.$$

$$\begin{split} o_{\mathsf{x}}' &= m_{00} o_{\mathsf{x}} + m_{01} o_{\mathsf{y}} + m_{02} o_{\mathsf{z}} + m_{03}, \\ o_{\mathsf{y}}' &= m_{10} o_{\mathsf{x}} + m_{11} o_{\mathsf{y}} + m_{12} o_{\mathsf{z}} + m_{13}, \\ o_{\mathsf{z}}' &= m_{20} o_{\mathsf{x}} + m_{21} o_{\mathsf{y}} + m_{22} o_{\mathsf{z}} + m_{23}. \end{split}$$

$$d' = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{y} \\ d_{z} \\ 0 \end{bmatrix}, \qquad d'_{x} = m_{00}d_{x} + m_{01}d_{y} + m_{02}d_{z}, \\ d'_{y} = m_{10}d_{x} + m_{11}d_{y} + m_{12}d_{z}, \\ d'_{z} = m_{20}d_{x} + m_{21}d_{y} + m_{22}d_{z}.$$

(Suffern, 420)

Computing p':

"if the closest hit point p *of the inverse transformed ray with the untransformed object occurs at* $t=t_0$ *, the closest hit point* p' *of the original ray with the transformed object occurs at the same value of* t*:* $t=t_0$ *" (Suffern, 421)*

Therefore:

$$p' = o + td$$

Computing n':

- First find *n*, the normal to the untransformed object at point *p*:
 - For a unit sphere, this is simply the vector from the origin to the hitpoint: n=p o
- Apply the transpose of the inverse transform to n: $n' = T^{-T}n$

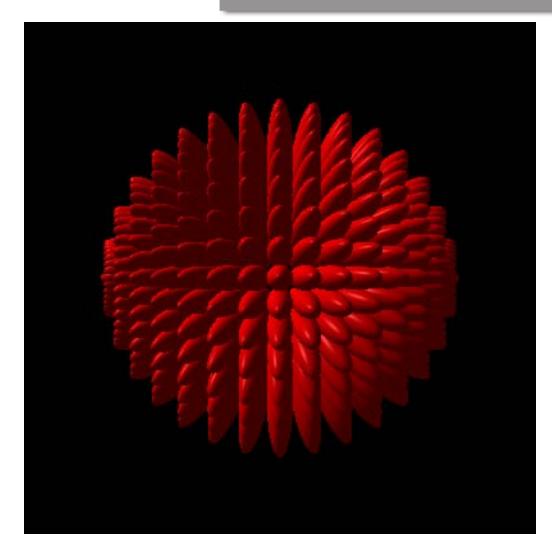
<i>n</i> =	m_{00}	m_{01}	m_{02}	m_{03}	۲ſ	nx]_	m ₀₀	m_{10}	m_{20}	0]	n _x
	m_{10}	m_{11}	m_{12}	<i>m</i> ₁₃		ny		<i>m</i> 01	m_{11}	m_{21}	0	ny
	m_{20}	m_{21}	m_{22}	m ₂₃		nz	-	m_{02}	m_{12}	m_{22}	0	$n_{\rm Z}$
	0	0	0	1	L	0		m ₀₃	m_{13}	m_{23}	1	[0]

$$\begin{split} n'_{\rm x} &= m_{00}n_{\rm x} + m_{10}n_{\rm y} + m_{20}n_{\rm z}, \\ n'_{\rm y} &= m_{01}n_{\rm x} + m_{11}n_{\rm y} + m_{21}n_{\rm z}, \\ n'_{\rm z} &= m_{02}n_{\rm x} + m_{12}n_{\rm y} + m_{22}n_{\rm z}. \end{split}$$
 (Suffern,424)

- Instead of creating a new object every time we want to show a different transformation of the same object, we create a pointer to that object:
 - The instance class implements instancing by:
 - Having a pointer to the object
 - Storing a the forward and inverse transformation matrices, and materials of that instance.
 - Each instance transforms its own local copy of the ray.
 - Every time the instance is transformed by a new transform T, its forward matrix (which defaults to the unit matrix) is multiplied by T, and its inverse matrix is multiplied by T⁻¹

- Instances can be nested:
 - An instance can point to another instance:
 - The hit function is called recursively until the object is untransformed.
 - This makes it easier to implement compound objects.
 - Q: Why?
 - A: Parts of the object can be transformed relative to a single part of the object. The entire object is then transformed relative to world coordinates.
 - A: Nested instances can partly share material properties.

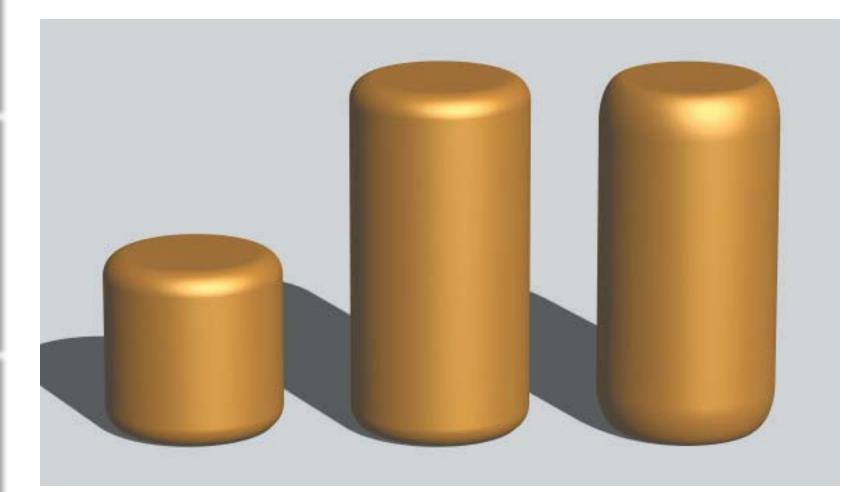
- Advantages of instancing:
 - Q: Can you guess some?
 - A: Less storage needed: we only store a pointer to the object, its transform matrices, and material properties, for each instance vs. storing a matrix (16 floats).



256 instances of sphere

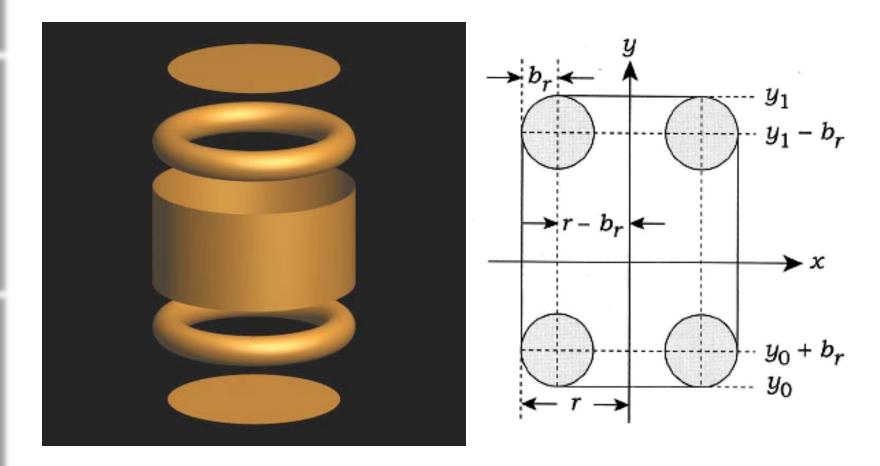
Code for previous image:

```
int n = 16;
for(int i=0;i<n;i++)</pre>
{
      for(int j=0;j<n;j++)</pre>
               Instance* ellipsoid_ptr = new Instance(new Sphere);
               ellipsoid_ptr->set_material(phong_ptr);
               ellipsoid_ptr->scale(1, 4, 1);
               ellipsoid_ptr->translate(0, 10, 0);
               ellipsoid_ptr->rotate_z((360.0f/(float)n)*(float)i);
               ellipsoid_ptr->rotate_x((360.0f/(float)n)*(float)j);
               add_object(ellipsoid_ptr);
```



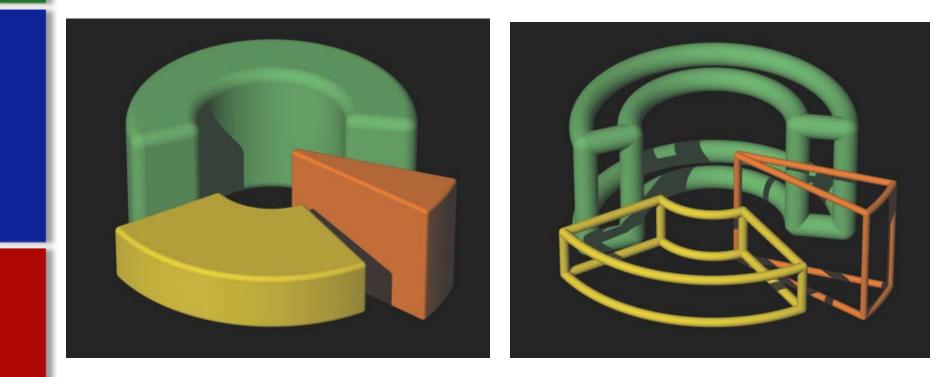
(Suffern, 437)

Compose transforms of primitive objects:

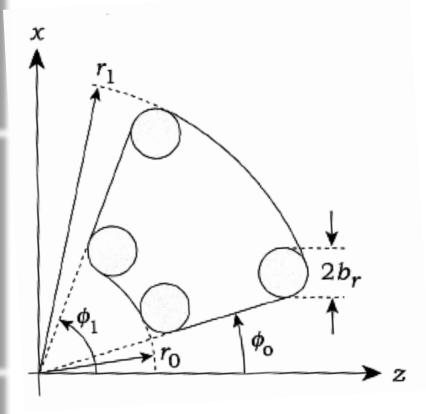


(Suffern, 433)

Beveled wedges:



(Suffern, 434)



- Parameters:
 - •y extents (not shown):
 - ■y₀ and y₁
 - Inner and outer radii:
 r₀ and r₁
 - •Min and max azimuth:
 - • ϕ_0 and ϕ_1
 - Bevel radius:

■b_r

Restrictions:

- $r_1 > r_0 > 0$ with min separations
- y₁ > y₀
- $0^{\circ} < \phi_0 < \phi_1 < 360^{\circ}$ with min separations

Igloo composed with beveled objects:

http://www.andynicholas.com/thezone/content/download/ambicolor/Igloo_ambi.jpg

References

 Suffern, Kevin (2007). Ray Tracing from the Ground Up.pp. 405-434 Wellesley, MA: A K Peters, Ltd.