
CS 563 Advanced Topics in
Computer Graphics

Transforming Objects – Chapter 21

by Wadii Bellamine

Outline

 Review of Affine Transformations
 Intersecting Transformed objects
 Instancing
 Beveled Objects

Review of Affine
Transformations

 3D Homogenous matrix transformations

p

p’=TpT

Review of Affine
Transformations

 Translation:

Review of Affine
Transformations

 Scaling:

Review of Affine
Transformations

 Rotation:

(Suffern,406)

Review of Affine
Transformations

 Inverse transformations:

(Suffern, 412)

Intersecting
Transformed Objects

 Problem Setup:

 We have a transformed object or primitive, and
want to calculate the hit point(s) with the ray,
and the normal to the object at that hit point.

 Problem: How exactly can we do this without
complicated arithmetic?

 Solution: Transform the ray instead of the object!
(so that we can take advantage of a simple closed

form solution)

Intersecting
Transformed Objects

 Five steps:
T*Object = Object’

T-1*ray = ray’
(=> means result)

1. Compute inverse transformation matrix of the
transformed object, and apply this to the ray, to
obtained an inverse transformed ray => ray’

2. Compute hit point of ray’ and untransformed
object Object => p

3. Compute normal to object at p => n
4. Apply T to p to obtain hit point of ray and

Object’ => p’
5. Apply T to n to obtain normal to Object’ => n’

Intersecting
Transformed Objects

 Simple illustration of procedure: Sphere

p’=Tp

p=T -1p’

n=T -Tn’

n’=T Tn

Intersecting Transformed
Objects – finding p’

 Computing ray’:
ray => p’ = o + td

p’ = Tp
p=T-1p’

p =T-1p’ = T-1o + tT-1d
T-1o = o’
T-1d = d’

p = o’+td’ => ray’

(blue = unknown)

 Computing t: Simple sphere example
 Unit sphere centered at origin:

x2 + y2 + z2 = 1

 Equation of ray’:

p = o’+td’=

 Combining the two equations, solve for t:

Intersecting Transformed
Objects – finding p’

 Computing o’ and d’:

(Suffern, 420)

Intersecting Transformed
Objects – finding p’

 Computing p’ :

“if the closest hit point p of the inverse
transformed ray with the untransformed
object occurs at t=t0 , the closest hit point p’
of the original ray with the transformed
object occurs at the same value of t: t=t0 “
(Suffern, 421)

Therefore:
p’ = o + td

Intersecting Transformed
Objects – finding p’

 Computing n’:
 First find n, the normal to the untransformed

object at point p:
 For a unit sphere, this is simply the vector from the

origin to the hitpoint: n=p – o

 Apply the transpose of the inverse transform to n:
n’ = T-Tn

(Suffern,424)

Intersecting Transformed
Objects – finding n’

Instancing

 Instead of creating a new object every time
we want to show a different transformation
of the same object, we create a pointer to
that object:
 The instance class implements instancing by:

 Having a pointer to the object
 Storing a the forward and inverse transformation

matrices, and materials of that instance.

 Each instance transforms its own local copy of the
ray.

 Every time the instance is transformed by a new
transform T, its forward matrix (which defaults to
the unit matrix) is multiplied by T, and its inverse
matrix is multiplied by T-1

Instancing

 Instances can be nested:
 An instance can point to another instance:

 The hit function is called recursively until the object is
untransformed.

 This makes it easier to implement compound
objects.
 Q: Why?
 A: Parts of the object can be transformed relative to a

single part of the object. The entire object is then
transformed relative to world coordinates.

 A: Nested instances can partly share material properties.

Instancing

 Advantages of instancing:

 Q: Can you guess some?

 A: Less storage needed: we only store a pointer
to the object, its transform matrices, and material
properties, for each instance vs. storing a matrix
(16 floats).

Instancing

256 instances of sphere

Instancing

 Code for previous image:

int n = 16;

for(int i=0;i<n;i++)

{

for(int j=0;j<n;j++)

{

Instance* ellipsoid_ptr = new Instance(new Sphere);

ellipsoid_ptr->set_material(phong_ptr);

ellipsoid_ptr->scale(1, 4, 1);

ellipsoid_ptr->translate(0, 10, 0);

ellipsoid_ptr->rotate_z((360.0f/(float)n)*(float)i);

ellipsoid_ptr->rotate_x((360.0f/(float)n)*(float)j);

add_object(ellipsoid_ptr);

}

}

Beveled Objects

(Suffern, 437)

Beveled Objects

 Compose transforms of primitive objects:

(Suffern,433)

Beveled Objects

 Beveled wedges:

(Suffern, 434)

Beveled Objects

Parameters:
y extents (not shown):
y0 and y1

 Inner and outer radii:
r0 and r1

Min and max azimuth:
ϕ0 and ϕ1

Bevel radius:
br

Restrictions:
 r1 >r0 >0 with min separations
 y1 > y0

 0° < ϕ0 < ϕ1 < 360° with min separations

Beveled Objects

 Igloo composed with beveled objects:

http://www.andynicholas.com/thezone/content/download/ambicolor/Igloo_ambi.jpg

References

 Suffern, Kevin (2007). Ray Tracing from the
Ground Up.pp. 405-434 Wellesley, MA: A K
Peters, Ltd.

	CS 563 Advanced Topics in �Computer Graphics�Transforming Objects – Chapter 21
	Outline
	Review of Affine Transformations
	Review of Affine Transformations
	Review of Affine Transformations
	Review of Affine Transformations
	Review of Affine Transformations
	Intersecting Transformed Objects
	Intersecting Transformed Objects
	Intersecting Transformed Objects
	Intersecting Transformed Objects – finding p’
	Intersecting Transformed Objects – finding p’
	Intersecting Transformed Objects – finding p’
	Intersecting Transformed Objects – finding p’
	Intersecting Transformed Objects – finding n’
	Instancing
	Instancing
	Instancing
	Instancing
	Instancing
	Beveled Objects
	Beveled Objects
	Beveled Objects
	Beveled Objects
	Beveled Objects
	References

