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Review of Affine 
Transformations

 3D Homogenous matrix transformations

p

p’=TpT



Review of Affine 
Transformations

 Translation:



Review of Affine 
Transformations

 Scaling:



Review of Affine 
Transformations

 Rotation:

(Suffern,406)



Review of Affine 
Transformations

 Inverse transformations:

(Suffern, 412)



Intersecting 
Transformed Objects

 Problem Setup:

 We have a transformed object or primitive, and 
want to calculate the hit point(s) with the ray, 
and the normal to the object at that hit point.

 Problem: How exactly can we do this without 
complicated arithmetic?

 Solution: Transform the ray instead of the object!
(so that we can take advantage of a simple closed 

form solution)



Intersecting 
Transformed Objects

 Five steps:
T*Object  = Object’

T-1*ray = ray’
(=> means result)

1. Compute inverse transformation matrix of the 
transformed object, and apply this to the ray, to 
obtained an inverse transformed ray => ray’

2. Compute hit point of ray’ and untransformed 
object Object => p

3. Compute normal to object at p => n
4. Apply T to p to obtain hit point of ray and 

Object’ => p’
5. Apply T to n to obtain normal to Object’ => n’



Intersecting 
Transformed Objects

 Simple illustration of procedure: Sphere

p’=Tp

p=T -1p’

n=T -Tn’

n’=T Tn



Intersecting Transformed 
Objects – finding p’

 Computing ray’:
ray => p’ = o + td

p’ = Tp
p=T-1p’

p =T-1p’ = T-1o + tT-1d
T-1o = o’
T-1d = d’

p = o’+td’ => ray’

(blue = unknown)



 Computing t: Simple sphere example
 Unit sphere centered at origin: 

x2 + y2 + z2 = 1

 Equation of ray’:

p = o’+td’=

 Combining the two equations, solve for t:

Intersecting Transformed 
Objects – finding p’



 Computing o’ and d’:

(Suffern, 420)

Intersecting Transformed 
Objects – finding p’



 Computing p’ :

“if the closest hit point p of the inverse 
transformed ray with the untransformed 
object occurs at t=t0 , the closest hit point p’
of the original ray with the transformed 
object occurs at the same value of t: t=t0 “ 
(Suffern, 421)

Therefore:
p’ = o + td

Intersecting Transformed 
Objects – finding p’



 Computing n’:
 First find n, the normal to the untransformed 

object at point p:
 For a unit sphere, this is simply the vector from the 

origin to the hitpoint: n=p – o

 Apply the transpose of the inverse transform to n:
n’ = T-Tn

(Suffern,424)

Intersecting Transformed 
Objects – finding n’



Instancing

 Instead of creating a new object every time 
we want to show a different transformation 
of the same object, we create a pointer to 
that object:
 The instance class implements instancing by:

 Having a pointer to the object
 Storing a the forward and inverse transformation 

matrices, and materials of that instance.

 Each instance transforms its own local copy of the 
ray.

 Every time the instance is transformed by a new 
transform T, its forward matrix (which defaults to 
the unit matrix) is multiplied by T, and its inverse 
matrix is multiplied by T-1



Instancing

 Instances can be nested:
 An instance can point to another instance:

 The hit function is called recursively until the object is 
untransformed.

 This makes it easier to implement compound 
objects.
 Q: Why?
 A: Parts of the object can be transformed relative to a 

single part of the object.  The entire object is then 
transformed relative to world coordinates.  

 A: Nested instances can partly share material properties.



Instancing

 Advantages of instancing:

 Q: Can you guess some?

 A: Less storage needed: we only store a pointer 
to the object, its transform matrices, and material 
properties, for each instance vs. storing a matrix 
(16 floats).



Instancing

256 instances of sphere



Instancing

 Code for previous image:

int n = 16;

for(int i=0;i<n;i++)

{

for(int j=0;j<n;j++)

{

Instance* ellipsoid_ptr = new Instance(new Sphere);

ellipsoid_ptr->set_material(phong_ptr);

ellipsoid_ptr->scale(1, 4, 1);

ellipsoid_ptr->translate(0, 10, 0);

ellipsoid_ptr->rotate_z((360.0f/(float)n)*(float)i);

ellipsoid_ptr->rotate_x((360.0f/(float)n)*(float)j);

add_object(ellipsoid_ptr);

}

}



Beveled Objects

(Suffern, 437)



Beveled Objects

 Compose transforms of primitive objects:

(Suffern,433)



Beveled Objects

 Beveled wedges:

(Suffern, 434)



Beveled Objects

Parameters:
y extents (not shown): 
y0 and y1

 Inner and outer radii:
r0 and r1

Min and max azimuth:
ϕ0 and ϕ1

Bevel radius:
br

Restrictions:
 r1 >r0 >0 with min separations
 y1 > y0

 0° < ϕ0 < ϕ1 < 360° with min separations



Beveled Objects

 Igloo composed with beveled objects:

http://www.andynicholas.com/thezone/content/download/ambicolor/Igloo_ambi.jpg
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