# CS 563 Advanced Topics in Computer Graphics Ray-Object Intersections

by Nik Deapen

# **Shooting Rays**

- Bounding Boxes
- Simple Objects
- Generic Objects
- Part Objects
- Compound Objects
- More?

## **Bounding Boxes**

- Saves Computational Time
- Idea
  - Put the object in a box
  - If the ray doesn't hit the box, it cant hit the object
- The object must be entirely contiained within the box
- The box must be axis aligned for the speedup to be greatest

## **Bounding Box**

- Box Representation
  - Bottom Left = PI = (x1,y1,z1)
  - Bottom Right =  $Pr = (x^2, y^2, z^2)$
- Code to Compute Hit or Miss
  - Page 358 Ray Tracing From the Ground Up
- Software Deign Considerations

public class ConcreteObject extends GeometricObject {
 private BoundingBox box;
 public boolean hit(Ray ray){
 if (!box.hit(ray))
 return;

}

}

@Override public boolean getBoundingBox(){return box;}

## Simple Objects

- Planes
- Spheres
- Triangles
- Disks

#### Plane

- Equation of a Plane
  - (p a) \* n = 0
- Drop in the Equation of A Ray
  - (o + td a) \* n = 0
  - t = (a o) n / (d\*n)
- Linear Equation (at + b = 0)
  - a = d \* n
  - b = n (a o)
- Solve for t
  - t = -b/a (a != 0)
- Normal
  - Given in Plane Definition

#### Sphere

- Equation of a Sphere
  - $(p-c)*(p-c) r^2 = 0$
- Drop in the Equation of A Ray
  - $(o + td c) * (o + td c) r^2$
- Gives Quadratic Equation (at<sup>2</sup> + bt + c = 0)
  - a = d\*d
  - b = 2 (o c) \* d
  - $c = (o c) * (o c) r^2$
- Can have 0, 1 or 2 Solutions for t
- Normal
  - (o-p)

# Triangle

- Defined as three points (q,r,s)
  - points must not be colinear
- Normal
  - (q r) x (s r)
- Barycentric Coordinates
  - p(a,b,y) = qa + rb + sy
    - a + b + y = 1
  - For inside the triangle
    - (a,b,y) (0,1)<sup>3</sup>
  - Substituting (a = 1 − b − y) gives
    - p(a, b, y) = q + b (r q) + y (s q)
    - (b,y,b+y) (0,1)<sup>3</sup>

## Triangle

- Hitting The Triangle
  - o + td = q + b(r q) y(s q)
  - b(r-q) y(s-q) td = o q
- This can be written as a system of 3 equations (one for each dimension)
  - Solve by using linear algebra
- Rays that hit the triangle satisfy the first constraint on (b,a,y)

## Disk

- Very Simple
  - Calculate the hitpoint on the plane
  - Measure the distance from the center of the disk to the hit point
  - Save time
    - Don't calculate SQRT

## **Generic Objects**

#### What are Generic Objects?

- Objects where
- Example
  - Sphere
    - r=1
    - Center = (0,0)
- Why?
  - We can only ray trace objects we can
    - 1. Derive the Ray-Intersection Equation
    - 2. Solve the Ray-Intersection Equation
  - Generic Objects provide another technique for solving the rayintersection equation
    - If we can solve the equation for a generic object, we can solve the equation for any linear transformation of that object

## **Higher Order Objects**

# Cylinder

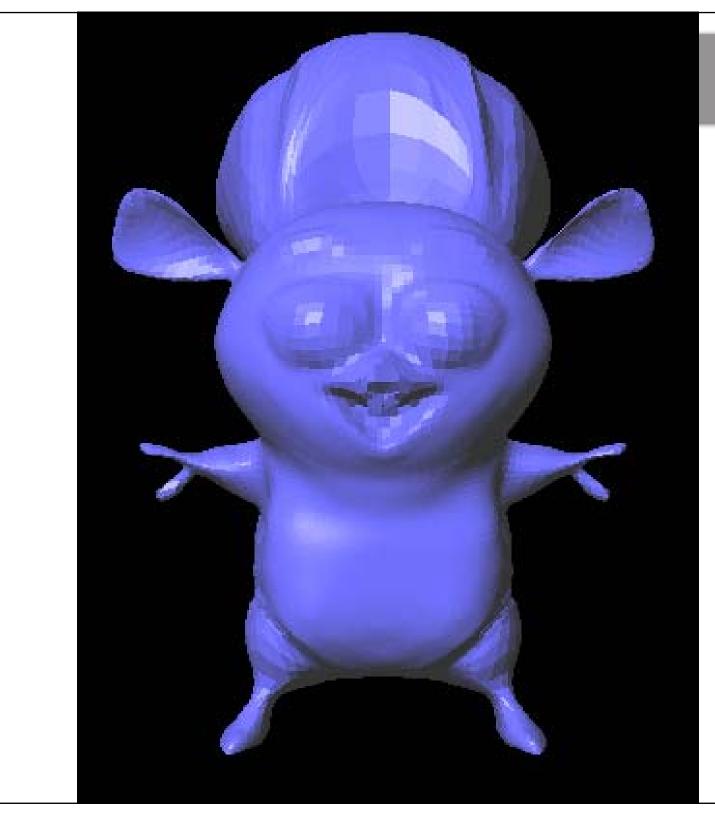
- Euclidean
  - $x^2 + y^2 r^2 = 0$
- Leads to Quadratic Equation
- Torus
  - $(z-a)^2 + y^2 b^2 = 0$
  - Leads to Quartic Equation
    - Solvable (code available)
- Any cylinder or torus can be solved by making it a generic object by transformations

# **Part Objects**

# Cylinder

- Limit the y values
- Limit the angle
  - Must compute the hist point angle
- Sphere
  - Limit y values
  - Limit angle
- Tori
  - Limit Either of the angles

## **Compound Objects**


- Can create more interesting objects
  - Solid Cylinder
- Leads to Hierarchal Bounding Boxes

#### More...

- Transformations
  - Start with a generic object, transform it
  - Compute the hitpoint for the generic object
  - Transform it Back
- Regular Grids
  - Divide up the space in to a grid
  - Only computer hit function for objects the ray passes through
- Clever Modeling

## **Current Work**

- How do we speed up Intersection Calculations?
  - Bounding Boxes
  - Regular Grids
    - Hierarchal Grids
  - Dividing objects into space boxes
  - Dividing rays into categories
    - See paper (Fast Ray Tracing by Ray Classification)



### Meshes

Low Rez
10<sup>3</sup>
High Rez
10<sup>5</sup>
Better Models
10<sup>7</sup>

## **Speeding Up Meshes**

- Convert to a Function(???)
  - Stomach is mostly flat(ish)
    - Why use so many polygons?
  - How?
    - Subdivide
    - 3D Version Beizier Curve?
- Space Partition the Mesh
  - Head/Tail/Legs/Arms/Body
  - Further Subdivision leads to binary search
  - Can also be done with a heirarchal regular grid

## **Further Reading**

- Calculus (3D)
- Linear Algebra

#### References

- Ray Classifications
  - http://portal.acm.org/citation.cfm?id=37401.37409&coll=Po rtal&dl=GUIDE&CFID=82389408&CFTOKEN=35547816
- Ray Tracing From The Ground Up