CS 563 Advanced Topics in Computer Graphics Area and Environment Lights

by Joe Miller

Goal of Area Lighting

- The goal of area lighting is to provide more realistic lighting
 - Define an area for light emitted instead of single points
 - Produce soft shadows instead

Point Light

Area Light

Overview / Review

- Using area lights we can simulate the penumbra which is lost with point lights and directional lights.
 - Umbra the part of the shadow where no light is visible
 - Penumbra the part of the shadow where a fraction of light is visible
- How much of a fraction is contributing to the penumbra is what needs to be computed.

Area light details

- Two tasks need to be accomplished with area lights
 - Displaying the light
 - Computing the light's illumination on the scene
- Displaying the light involves setting the material of an object to be emissive

Area light details

Term

- Need to estimate the direct illumination for a given point
- Recall *area form* rendering equation L_{o} , \Box_{o} , \Box_{e} , \Box_{e} , \Box_{o} , \Box_{o} , \Box_{o} , \Box_{o} , \Box_{o} , \Box_{o} , P', \Box' , P', P',

Estimating Direct Illumination

 $L_{o} \square p, \square_{o} \square L_{e} \square p, \square_{o} \square \int_{A} f_{r} \square p, \square_{o} \square L_{o} \square L_{o} \square L_{o} \square P', \neg \neg \square \square P , p' \square A$

 $L_o \square ', \neg \square \square \square L_e \square ', \neg \square \square \square$

• $G \square p$, $p' \square \cos \square \cos \square / //p' - p//$

- Sum the illumination from all lights $\overline{\sum_{i=1}^{n_i}}$
 - $= L_o \square p, \square_o \square \sum_{k=1}^{n_l} \int_{A,k} f_r \square p, \square_i, \square_o \square_e \square p', \neg \square_i \square' \square p, p' \square P', p' \square A'$
- Estimate the integral using Monte Carlo Integration

Choosing a pdf

- Defining the pdf can be difficult
- Ideally it represents the distribution of samples points over the light
- This may be difficult as the shape of the light becomes increasingly more complex
- For simple planar lights a uniform distribution over the light's surface area \rightarrow 1 / A₁

•
$$p(x) = c \rightarrow probability is constant$$

$$\int_{A_{l}} p \, \Box A \, \Box A = 1 \rightarrow C = 1/A_{l}$$

- Surface area equations
 - Rectangle $\rightarrow 1/\square * h \square$
 - Disk $\rightarrow 1/mr^2$
 - Sphere $\rightarrow 1/\square \square r^2 \square r^2$

Examples

Single rectangular light

Multiple colored light

Phong Material

- Rendering spherical lights can lead to more noise
 - Many of the sampled points on the sphere are useless since they represent the backside of the sphere
 - Any thoughts on how this can be fixed?

More Potential Problems

- Another problem occurs when the light source is near an intersection point
 - The 1/d² in the geometric term approaches infinity as d get larger

- Unlike area lights environmental lights surround the entire scene
- These lights often are intended to represent a global lighting effect.
- The general idea is to have a sphere surround the scene
- Similar to area lights, the sphere will have an emissive material which will cast light on other objects in the scene

Environment Light Details

- Once again we need to estimate the direct illumination at a hit point
- Shoot rays into the solid angle subtended at point p and test for intersection with the light
- Recall *hemisphere form* rendering equation $L_{o} \square, \square_{o} \square L_{e} \square, \square_{o} \square \int_{2\square} f_{r} \square, \square, \square_{o} \square_{i} \square, \square_{i} \square os \square d \square$

Environment Light Details

 Use Monte Carlo Integration to estimate hemisphere formula

$$\begin{split} L_{o} & \swarrow , \Box_{o} & \equiv L_{e} & \swarrow , \Box_{o} & \coprod \\ \sum_{2 \Box} f_{r} & \swarrow , \Box_{i}, \Box_{o} & \amalg_{i} & \swarrow ', \Box_{i} & \Box & \Box_{i} &$$

- Choosing a PDF
 - PDF is in terms of a solid angle ω_i

• Let
$$p = c \cos \sqrt{1}$$

$$\int_{2\square} p \boxplus \square \square \square = 1 \longrightarrow c \int_{0}^{2\square \square \square} \cos \square \sin \square d \square d \square = 1 \longrightarrow c = 1/\square$$

$$p = \cos \square / \square$$

Hemisphere Light Examples

Environment Light

Add directional and ambient occlusion

Apply phong material

References

- Pharr, M., and G. Humphreys (2004).
 Physically based rendering: From theory to implementation. San Francisco: Morgan Kaufmann
- Suffern, Kevin (2007). Ray Tracing from the Ground Up. pp. 119-131 Wellesley, MA: A K Peters, Ltd.