
CS 563 Advanced Topics in
Computer Graphics

Shadows

by Sam Song

Shadows

 Introduction
 Definitions
 Implementation
 Costs
 Results

Introduction

 Why do we need shadows?
 Where are the objects relative to the plane?
 How many light sources are there?
 What type of light / direction
 What are the relative sizes of the objects?

Introduction

 Shadows give us important visual clues
 Objects are on or penetrating plane
 There are two light sources
 Able to estimate relative sizes

 Shadows are everywhere and expected for
realism

Definitions

 Shadows
 Part of the scene that is blocked from a light

source by some object
 3 dimensional space – only rendered on object

surfaces

 Point and direction lights
 Hard edged shadows

Definitions

 Real lights have finite surfaces
 Partially blocked by objects

 Umbra: no direct illumination from light source
 Penumbra: partial illumination from light source

Definitions

 Soft shadows
 no sharp boundaries

Implementation

 How do we implement shadows for point
lights?

 Equation for reflected radiance from the light

 We need to evaluate the visibility function
 V(p, lp)
 p = hit point
 lp = light location

 We need to know if a hit point is in shadow from a
point light

Implementation

 Shadow Ray
 Shoot a ray from the hit point to the point light

and check if the ray hits anything in-between

 Hit point a shaded with ambient and direct
illumination

 Hit point b shaded with only ambient illumination

Implementation

 Check if shadow rays intersect with objects
to determine if a hit point is in shadow

 Origin of the Shadow Ray is the hit point p of
the primary ray

 Direction of the Shadow Ray is towards the
light point lp
 d = (lp – p) / ||pl – p ||

 Shadow Ray intersection is only valid if the
hit point is between origin and light
 t < distance

Implementation

 Epsilon
 Constant ε > 0 in hit functions
 ε < t

bool
Plane::shadow_hit(const Ray& ray, float& tmin) const {

float t = (a - ray.o) * n / (ray.d * n);

if (t > kEpsilon) {
tmin = t;
return (true);

}
else

return (false);
}

 Why do we need Epsilon?

Implementation

 ε = 0
 Salt-and-pepper noise
 Random self shadowing

Implementation

 Hit points can be above or below the surface
of the object
 Finite numerical precision
 Origin of shadow ray may be inside or outside

surface
 t=0 for the hit function of a shadow ray may not

return the intersection with the surface

Implementation

 The value of t can randomly be small positive
or negative values even for a plane surface

 Positive t value cause the shadow ray to
return true and self shadow

 To stop self shadowing
 ε larger than the largest possible t value that

could return true
 Constant ε value for each geometric object

 plane uses ε = 0.00001
 Global constant could create artifacts

 Does consider object sizes
 Reflected & transmitted rays originate on objects

surfaces

Costs

 Why are shadow are expensive to render?

 Each hit point requires a shadow ray to each
point light

 Each shadow ray needs to check intersection with
objects in the scene

Costs

 How can we cheapen the cost?

 Allow shadowing options
 Lights & Objects optionally cast shadows
 Materials optionally have shadows cast on them

 If shading inside transparent objects

 Not physically correct but allows for flexibility to
get an image to look right

 Allows for quicker rendering to test new features

Costs

 Shadow rays can potentially check all of the
objects in the scene, but we can stop if we
find a hit point

 Create a shadow_hit function to replace the
standard hit function
 Standard hit returns an unneeded normal
 Helps for more complicated objects
 Not much work, shadow hit function requires

removing shading code from the standard hit
function

 Increases code size

 Only create shadow rays if the surface hit
point of the primary ray is facing towards the
light point (n dot w0) > 0

 Caching
 Remember which object a shadow ray intersects
 Use that object to test first
 May intersect again because shadow rays point to

the same location

Results

Results

Results

Results

Discussion

 Questions?

References

 http://www.raytracegroundup.com
 Suffern, Kevin (2007). Ray Tracing from the

Ground up. Pp. 197-216 Wellesley, MA: A K
Peters, Ltd.

 http://www.siggraph.org/education/materials
/HyperGraph/raytrace/rtracewr.htm

 http://www.groovyvis.com/other/raytracing/s
hadows.html

http://www.raytracegroundup.com/�
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtracewr.htm�
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtracewr.htm�

	CS 563 Advanced Topics in �Computer Graphics�Shadows
	Shadows
	Introduction
	Introduction
	Definitions
	Definitions
	Definitions
	Implementation
	Implementation
	Implementation
	Slide Number 11
	Implementation
	Implementation
	Implementation
	Implementation
	Costs
	Costs
	Costs
	Slide Number 19
	Results
	Results
	Results
	Results
	Discussion
	References

