
CS 563 Advanced Topics in
Computer Graphics

Shadows

by Sam Song

Shadows

 Introduction
 Definitions
 Implementation
 Costs
 Results

Introduction

 Why do we need shadows?
 Where are the objects relative to the plane?
 How many light sources are there?
 What type of light / direction
 What are the relative sizes of the objects?

Introduction

 Shadows give us important visual clues
 Objects are on or penetrating plane
 There are two light sources
 Able to estimate relative sizes

 Shadows are everywhere and expected for
realism

Definitions

 Shadows
 Part of the scene that is blocked from a light

source by some object
 3 dimensional space – only rendered on object

surfaces

 Point and direction lights
 Hard edged shadows

Definitions

 Real lights have finite surfaces
 Partially blocked by objects

 Umbra: no direct illumination from light source
 Penumbra: partial illumination from light source

Definitions

 Soft shadows
 no sharp boundaries

Implementation

 How do we implement shadows for point
lights?

 Equation for reflected radiance from the light

 We need to evaluate the visibility function
 V(p, lp)
 p = hit point
 lp = light location

 We need to know if a hit point is in shadow from a
point light

Implementation

 Shadow Ray
 Shoot a ray from the hit point to the point light

and check if the ray hits anything in-between

 Hit point a shaded with ambient and direct
illumination

 Hit point b shaded with only ambient illumination

Implementation

 Check if shadow rays intersect with objects
to determine if a hit point is in shadow

 Origin of the Shadow Ray is the hit point p of
the primary ray

 Direction of the Shadow Ray is towards the
light point lp
 d = (lp – p) / ||pl – p ||

 Shadow Ray intersection is only valid if the
hit point is between origin and light
 t < distance

Implementation

 Epsilon
 Constant ε > 0 in hit functions
 ε < t

bool
Plane::shadow_hit(const Ray& ray, float& tmin) const {

float t = (a - ray.o) * n / (ray.d * n);

if (t > kEpsilon) {
tmin = t;
return (true);

}
else

return (false);
}

 Why do we need Epsilon?

Implementation

 ε = 0
 Salt-and-pepper noise
 Random self shadowing

Implementation

 Hit points can be above or below the surface
of the object
 Finite numerical precision
 Origin of shadow ray may be inside or outside

surface
 t=0 for the hit function of a shadow ray may not

return the intersection with the surface

Implementation

 The value of t can randomly be small positive
or negative values even for a plane surface

 Positive t value cause the shadow ray to
return true and self shadow

 To stop self shadowing
 ε larger than the largest possible t value that

could return true
 Constant ε value for each geometric object

 plane uses ε = 0.00001
 Global constant could create artifacts

 Does consider object sizes
 Reflected & transmitted rays originate on objects

surfaces

Costs

 Why are shadow are expensive to render?

 Each hit point requires a shadow ray to each
point light

 Each shadow ray needs to check intersection with
objects in the scene

Costs

 How can we cheapen the cost?

 Allow shadowing options
 Lights & Objects optionally cast shadows
 Materials optionally have shadows cast on them

 If shading inside transparent objects

 Not physically correct but allows for flexibility to
get an image to look right

 Allows for quicker rendering to test new features

Costs

 Shadow rays can potentially check all of the
objects in the scene, but we can stop if we
find a hit point

 Create a shadow_hit function to replace the
standard hit function
 Standard hit returns an unneeded normal
 Helps for more complicated objects
 Not much work, shadow hit function requires

removing shading code from the standard hit
function

 Increases code size

 Only create shadow rays if the surface hit
point of the primary ray is facing towards the
light point (n dot w0) > 0

 Caching
 Remember which object a shadow ray intersects
 Use that object to test first
 May intersect again because shadow rays point to

the same location

Results

Results

Results

Results

Discussion

 Questions?

References

 http://www.raytracegroundup.com
 Suffern, Kevin (2007). Ray Tracing from the

Ground up. Pp. 197-216 Wellesley, MA: A K
Peters, Ltd.

 http://www.siggraph.org/education/materials
/HyperGraph/raytrace/rtracewr.htm

 http://www.groovyvis.com/other/raytracing/s
hadows.html

http://www.raytracegroundup.com/�
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtracewr.htm�
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtracewr.htm�

	CS 563 Advanced Topics in �Computer Graphics�Shadows
	Shadows
	Introduction
	Introduction
	Definitions
	Definitions
	Definitions
	Implementation
	Implementation
	Implementation
	Slide Number 11
	Implementation
	Implementation
	Implementation
	Implementation
	Costs
	Costs
	Costs
	Slide Number 19
	Results
	Results
	Results
	Results
	Discussion
	References

