CS 563 Advanced Topics in Computer Graphics

Lights and Materials

by Steve Olivieri
Two Types of Illumination

- Direct Illumination: light that hits a surface by traveling directly from a light source. (a)
- Indirect Illumination: light that hits a surface after being reflected from another surface. (b)
Different materials reflect light in different ways.

- Perfect Diffuse: light scattered equally in all directions (matte surfaces).
- Perfect Specular: light reflected in a single mirror ray (mirror surfaces).
- Glossy Specular: light reflected in a mirror direction, but scattered (shiny surfaces).

Not all materials fit these three models!
Ray tracing is all about modeling the behavior of lights in a scene.

There are many different types of lights, including ambient, ambient occluder, directional, point, area, and environment.

Light are typically defined by their power (radiant flux), but we can fudge it with

- c_l, the color of the light (RGB)
- I_s, the radiance scaling factor (intensity)
• It is difficult to model indirect, diffuse illumination.
• Instead, we define an ambient light source.
 • Constant color and intensity throughout the scene.
 • Prevents surfaces receiving only indirect illumination from appearing too dark, or black.
 • Not a real, physical light.
• The incident radiance from the ambient light is $L_i = L_s c_i$.
• The reflected ambient radiance is $L_o = \rho_{hh}(\rho) * l_s c_i$.
Ambient Orbs
Directional lights are defined by a single vector that points \textit{toward} the light source.

The incoming light is a series of parallel rays.

Directional lights are not physical lights and do not have a real location.

The Sun is a good approximation of a directional light because the rays that hit the Earth are essentially parallel.
- Directional Light Balls
- Directional Light Orbs
- Point lights are defined as a location, rather than as a vector.
- Because a point has no surface area, point lights are not physical objects.
- Point lights emit light equally in all directions.
- Light is attenuated according to the inverse square of the distance a surface is from the source.
- Point Balls
- Point Orbs
Q: How do we know when to shade a surface?
A: When $\mathbf{n} \cdot \mathbf{l} < 0$, only shade with ambient illumination.
Q: How do we shade the inside surfaces?
A: Reverse the normal!
Problems

(a) \[n \cdot l > 0 \quad n \cdot \omega_o > 0 \]
ambient + diffuse

(b) \[n \cdot l < 0 \quad n \cdot \omega_o > 0 \]
ambient only

(c) \[n \cdot l < 0 \quad n \cdot \omega_o > 0 \]
ambient only

(d) \[n \cdot l > 0 \quad n \cdot \omega_o > 0 \]
ambient + diffuse
Different surfaces are made of different materials.

Different materials reflect light differently. Thus, they require different shading models.

Two materials that we learned about previously:
- Matte
- Phong

Other surfaces might be translucent, metallic, or reflective.

Materials are represented with a set of BRDFs and a shade() function.
The matte material models perfect diffuse reflection.
Matte contains a Lambertian BRDF for ambient shading and another for diffuse shading.
The shade() function is simple.

```
RGBCol or
Matte::shade(ShadeRec& sr) {
    L = ambient_contribution;
    for(i = 0; i < numLights; i++) {
        calculate ndotwi
        if(ndotwi > 0)
            L += diffuse_contribution;
    }
    return L;
}
```
Matte Material

- Matte Balls, Two Lights
Matte Material

- Matte Orbs
The Phong material adds specular highlights to the ambient and diffuse shading. So, Phong surfaces appear glossy.

This material contains the ambient and diffuse Lambertian BRDFs as well as a GlossySpecular BRDF. The GlossySpecular BRDF contains the k_s and e values (remember Phong shading?)

The shading function remains nearly unchanged.

```c
... for(i = 0; i < numLights; i++)
...

    L += specular_contribution + diffuse_contribution;
...```
Phong Material

- Specular Balls
Phong Material

- Specular Orbs
Phong Material
QUESTIONS?