CS 563 Advanced Topics in Computer Graphics *Lights and Materials*

by Steve Olivieri

Shading Architecture

Two Types of Illumination

- Direct Illumination: light that hits a surface by traveling directly from a light source. (a)
- Indirect Illumination: light that hits a surface after being reflected from another surface. (b)

Reflection of Light

- Different materials reflect light in different ways.
 - Perfect Diffuse: light scattered equally in all directions (matte surfaces).
 - Perfect Specular: light reflected in a single mirror ray (mirror surfaces).
 - Glossy Specular: light reflected in a mirror direction, but scattered (shiny surfaces).
- Not all materials fit these three models!

- Ray tracing is all about modeling the behavior of lights in a scene.
- There are many different types of lights, including ambient, ambient occluder, directional, point, area, and environment.
- Light are typically defined by their power (radiant flux), but we can fudge it with
 - *c_µ* the color of the light (RGB)
 - *I*_s, the radiance scaling factor (intensity)

Ambient Lights

- It is difficult to model indirect, diffuse illumination.
- Instead, we define an ambient light source.
 - Constant color and intensity throughout the scene.
 - Prevents surfaces receiving only indirect illumination from appearing too dark, or black.
 - Not a real, physical light.
- The incident radiance from the ambient light is L_i=L_sc_l.
- The reflected ambient radiance is $L_0 = \rho_{hh}(\rho) * I_s c_1$.

Ambient Lights

Ambient Orbs

Directional Lights

- Directional lights are defined by a single vector that points toward the light source.
- The incoming light is a series of parallel rays.
- Directional lights are not physical lights and do not have a real location.
- The Sun is a good approximation of a directional light because the rays that hit the Earth are essentially parallel.

Directional Lights

Directional Light Balls

Directional Lights

Directional Light Orbs

Point Lights

- Point lights are defined as a location, rather than as a vector.
- Because a point has no surface area, point lights are not physical objects.
- Point lights emit light equally in all directions.
- Light is attenuated according to the inverse square of the distance a surface is from the source.

Point Lights

Point Balls

Point Lights

Point Orbs

Q: How do we know when to shade a surface? A: When $n \cdot I < 0$, only shade with ambient illumination.

Problems

Q: How do we shade the inside surfaces?A: Reverse the normal!

Problems

Materials

- Different surfaces are made of different materials.
- Different materials reflect light differently. Thus, they require different shading models.
- Two materials that we learned about previously:
 - Matte
 - Phong
- Other surfaces might be translucent, metallic, or reflective.
- Materials are represented with a set of BRDFs and a shade() function.

- The matte material models perfect diffuse reflection.
- Matte contains a Lambertian BRDF for ambient shading and another for diffuse shading.
- The shade() function is simple.

```
RGBCol or
Matte::shade(ShadeRec& sr) {
   L = ambient_contribution;
   for(i = 0; i < numLights; i++) {
      calculate ndotwi
      if(ndotwi > 0)
      L += diffuse_contribution;
   }
```

```
return L;
```

}

Matte Material

Matte Balls, Two Lights

Matte Material

Matte Orbs

- The Phong material adds specular highlights to the ambient and diffuse shading. So, Phong surfaces appear glossy.
- This material contains the ambient and diffuse Lambertian BRDFs as well as a GlossySpecular BRDF. The GlossySpecular BRDF contains the k_s and e values (remember Phong shading?)
- The shading function remains nearly unchanged.

...

...

for(i = 0; i < numLights;
$$i + +$$
)

L += specular_contribution + diffuse_contribution;

Phong Material

Specular Balls

Phong Material

Specular Orbs

Phong Material

QUESTIONS?