CS 563 Advanced Topics in Computer Graphics Glossy Reflection

by Nik Deapen

Difference from Mirror Reflection

- Instead of having the same direction for the reflection, jitter it with a cosine power distribution
- BRDF
 - cos(theta)^e
 - The constant e controls the glossyness of the image
 - e = infinity gives perfect mirror reflection
 - e = 1 gives diffuse sphere
 - e in 100 to 1000 gives good results

Back to Chapter 7

Cosine Distributions

Affects of e

e = (1, 10, 100, 1000, 10000, 100000)

★ C:\Users\Nik	★ C:\Users\Nik	C:\Users\Nik
Deapen\Desktop\Chapter25\Ray	Deapen\Desktop\Chapter25\Ray	Deapen\Desktop\Chapter25\Ray
Traced Images	Traced Images	Traced Images
25\Figure25.08(a).jpg	25\Figure25.08(b).jpg	25\Figure25.08(c).jpg
C:\Users\Nik	C:\Users\Nik	C:\Users\Nik
Deapen\Desktop\Chapter25\Ray	Deapen\Desktop\Chapter25\Ray	Deapen\Desktop\Chapter25\Ray
Traced Images	Traced Images	Traced Images
25\Figure25.08(d).jpg	25\Figure25.08(e).jpg	25\Figure25.08(f).jpg

Runtime

Variables

- MAX_DEPTH
- NUM_SAMPLES
- Worste Case (per primary ray)
 - NUM_SAMPLES * MAX_DEPTH

What should these numbers be?

- MAX_DEPTH
 - depends on the scene
 - 5 seems like a good number
 - unless more is obviously needed
- NUM_SAMPLES
 - Kevin Suffern likes 1
 - This falls in nicely with his architecture
 - Then he has to sample with more primary rays (around 100)
 - I can get same results much faster with 9 secondary and 9 primary
 - Why?
 - Most rays don't actually hit a glossy object so it only expands if it needs to
 - Problems
 - Mine is exponential (although it doesn't happen often in most scenes)

Implementation

- Steps
 - Calculate r (Previous Chapter)
 - (the reflected ray in perfect mirror reflection)
 - Calculate (r x w) and -w
 - this will give u an orthonormal basis for the hemisphere
 - Sample The Hemisphere
 - compute the new ray (p->s)
 - if this ray is below the orthonormal plane, reflect it above the plane
 - Trace the rays again
 - Compute the color of each ray that was traced from the object
 - Combine this color with the color of the object

Orthonomal Basis

- -W = -W
- r = -w + 2 (n*w) n
 - Chapter 24***
- u = (r x w)
- w and u are the basis with r pointing strait up the hemisphere

Sample the Hemisphere

- See Chapter 7
 - Explains in detail how to sample a hemisphere with a cosine power distribution
- Compute (p->s)
 - (easliy done)
 - p = the hit point
 - s = the sample point

Reflect the Ray

- If (p->q) is below the plane given by (p,n)
 - REFLECT
- How?
 - Test if (n*w) < 0</p>
 - New Ray
 - $-S_{\chi}U S_{y}V + S_{z}W$
- Problems With Reflection
 - Distribution is destroyed
 - Doesn't really matter?

What happens if we don't?

- The sphere on the left is rendered incorrectly
 - The dark edges around the circumference come from the occlusin of the points that are bounced inside the sphere
- This reflection can be ommited for real time
 - See further reading

Retrace The Ray

- Trace the ray (p->q)
 - Make sure you don't hit the object you are tracing from
- Keep track of the bounce count
 - When the ray exceeds the maximum bounce color it black
 - Other options??
- Combining Colors
 - First Combine all the colors obtained from retracing
 - Now combine it with the color of the material

Phsyically Based Glossy Reflectance

- Based on Parameters
 - Specular
 - Contrast
 - Distinctness of Image
 - Haze
 - Sheen
 - Absense of Texture
- Not all of these are physical quantities

Results

References

- Ray Tracing From the Ground Up
 - Kevin Stuffern
- Toward a Psychophysically Based Light Reflection Model for Image Synthesis
 - Pellacini (200)
- Is Accurate Occlusion of Glossy Reflections Necessary?
 - Kozlowski (2007)