CS 563 Advanced Topics In
Computer Graphics
Mirror Reflection

by Steve Olivieri




» Reflections provide us with a way to model indirect
Illumination In ray traced images.
= Some objects may appear more than once.
» Objects the camera cannot see may appear.

= Perfect mirror reflection is the simplest model.




» Physically correct models involve complex integrals
(e.g. Fresnel in Chapter 28).

= We can model mirror reflection with only two
parameters.
= Kr : reflection coefficient
= Cr : reflection color




* |n a scene with multiple reflective surfaces, a ray
may bounce more than once.

= Consider the reflected ray, r, which bounces off of
pomt P.

Hit nothing, return the background color to p.

= Hit a light source, return L_to p.

= Hit a non-reflective object, return the direct illumination at
p’ to p.

= Hit another reflective object, calculate the direct
illumination at p’ and then create reflected ray 7.

Accumulate illumination.




One ray might bounce multiple times.




One ray might bounce infinitely!

,-"i‘ LG[r [.Pr mi]:- _mi}

!’_,-".. 'Li[P’ mi}




= Developed by Turner Whitted of Bell Laboratories in
1980.

= Support for secondary rays in addition to primary
and shadow rays.

= Recursivel

= NO need to alter cameras or material shade
functions.




= Recall the current RayCast trace ray() function.

RGBColor RayCast::trace ray(Ray& ray) {
ShadeRec sr(world_ptr->hit_objects(ray)):

iIT(sr.hit _an object) {

sr.ray = ray;

return (sr.material_ptr->shade(sr));
} else {

return (world _ptr->background color);

}
}




= Whitted: add a depth parameter!

RGBColor Whitted::trace ray(Ray ray, int depth) {
1T(depth > world _ptr->vp.max_depth)
return (black);

ShadeRec sr(world_ptr->hit_objects(ray)):

iIT(sr.hit _an _object) {

sr.depth = depth;

sr.ray = ray;

return (sr.material_ptr->shade(sr));
} else {

return (world _ptr->background color);

}
}




= \Where’s the recursion?

= Create a reflective material that calls trace_ray() in
Its shade() function!

= “Recursion by stealth”

RGBColor Reflective::shade(ShadeRec& sr) {
RGBColor L(Phong::shade(sr));

Vector3D wo = -sr.ray.d, wi;

RGBColor fr = reflective brdf->sample f(sr, wo, wi);
Ray reflected ray(sr.hit point, wi);

L += fr * sr.w.tracer_ ptr->trace ray(reflected ray,
sr.depth + 1) * (sr.normal * wi);

return (L);




* Direct illumination models glossy reflection (Phong
model), indirect illumination models perfect
reflection.

= Mismatched coefficients — k, should equal k!
= One can bypass the Phong material by setting k&, =
k,= k.= 0.
= Use a white color for a mirror

= Use a non-white color for colorful reflective surface
= These objects receive only indirect illumination




* There are two types of “images” in optics literature.

* Plane and convex mirrors form only virtual images.
= No light comes from the image.
= Light rays never actually touch the image, but appear to.




= Concave mirrors can also create real images.
» Lights rays actually pass through the image.




= Hall of Mirrors, depth =0

Hall of Mirrors




= Hall of Mirrors, depth =1




= Hall of Mirrors, depth = 2




= Hall of Mirrors, depth = 10




= Four reflective Phong orbs, depth = 12

Four Orbs




= Zoomed in on four reflective Phong orbs, depth = 12




= Sierpinski Gasket

& L4

¥
L b
vv v'v
'v" hi v
hd Tv‘!’ YYTYTYYY

hd




» Reflective shapes, depth =5




QUESTIONS?




