
CS 563 Advanced Topics in
Computer Graphics

Mirror Reflection

by Steve Olivieri

Reflection

Reflections provide us with a way to model indirect
illumination in ray traced images.

Some objects may appear more than once.
Objects the camera cannot see may appear.

Perfect mirror reflection is the simplest model.

Mirror Reflection

Physically correct models involve complex integrals
(e.g. Fresnel in Chapter 28).
We can model mirror reflection with only two
parameters.

Kr : reflection coefficient
Cr : reflection color

Multiple Bounces

In a scene with multiple reflective surfaces, a ray
may bounce more than once.
Consider the reflected ray, r, which bounces off of
point p.

Hit nothing, return the background color to p.
Hit a light source, return Le to p.
Hit a non-reflective object, return the direct illumination at
p’ to p.
Hit another reflective object, calculate the direct
illumination at p’ and then create reflected ray r2.
Accumulate illumination.

Multiple Bounces

One ray might bounce multiple times.

Multiple Bounces

One ray might bounce infinitely!

Whitted Tracer

Developed by Turner Whitted of Bell Laboratories in
1980.
Support for secondary rays in addition to primary
and shadow rays.
Recursive!
No need to alter cameras or material shade
functions.

Whitted Tracer

Recall the current RayCast trace_ray() function.

RGBColor RayCast::trace_ray(Ray& ray) {

ShadeRec sr(world_ptr->hit_objects(ray));

if(sr.hit_an_object) {

sr.ray = ray;

return (sr.material_ptr->shade(sr));

} else {

return (world_ptr->background_color);

}

}

Whitted Tracer

Whitted: add a depth parameter!

RGBColor Whitted::trace_ray(Ray ray, int depth) {

if(depth > world_ptr->vp.max_depth)

return (black);

ShadeRec sr(world_ptr->hit_objects(ray));

if(sr.hit_an_object) {

sr.depth = depth;

sr.ray = ray;

return (sr.material_ptr->shade(sr));

} else {

return (world_ptr->background_color);

}

}

Reflective Material

Where’s the recursion?
Create a reflective material that calls trace_ray() in
its shade() function!
“Recursion by stealth”

RGBColor Reflective::shade(ShadeRec& sr) {

RGBColor L(Phong::shade(sr));

Vector3D wo = -sr.ray.d, wi;

RGBColor fr = reflective_brdf->sample_f(sr, wo, wi);

Ray reflected_ray(sr.hit_point, wi);

L += fr * sr.w.tracer_ptr->trace_ray(reflected_ray,
sr.depth + 1) * (sr.normal * wi);

return (L);

}

A few notes…

Direct illumination models glossy reflection (Phong
model), indirect illumination models perfect
reflection.
Mismatched coefficients – kr should equal ks!
One can bypass the Phong material by setting ka =
kd = ks = 0.

Use a white color for a mirror
Use a non-white color for colorful reflective surface
These objects receive only indirect illumination

The Optics Connection

There are two types of “images” in optics literature.
Plane and convex mirrors form only virtual images.

No light comes from the image.
Light rays never actually touch the image, but appear to.

The Optics Connection

Concave mirrors can also create real images.
Lights rays actually pass through the image.

Hall of Mirrors

Hall of Mirrors, depth = 0

Hall of Mirrors

Hall of Mirrors, depth = 1

Hall of Mirrors

Hall of Mirrors, depth = 2

Hall of Mirrors

Hall of Mirrors, depth = 10

Four Orbs

Four reflective Phong orbs, depth = 12

Four Orbs

Zoomed in on four reflective Phong orbs, depth = 12

Problems

Sierpinski Gasket

Reflective Shapes

Reflective shapes, depth = 5

QUESTIONS?

