
CS 563 Advanced Topics in
Computer Graphics

Lecture 2: Bare-Bones Raytracer

by Emmanuel Agu

Ray Casting (Appel, 1968)

direct illumination

Recursive ray tracing
(Whitted, 1980)

Pseudocode for Ray
Tracer

Basic idea

color Raytracer{
for(each pixel direction){
determine first object in this pixel direction
calculate color shade
return shade color

}
}

More Detailed Ray Tracer Pseudocode

Define the objects and light sources in the scene
Set up the camera
For(int r = 0; r < nRows; r++){

for(int c = 0; c < nCols; c++){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color of light to eye along ray
6. Set rc-th pixel to this color

}
}

Build the RC-th Ray

Parametric expression ray starting at eye and
passing through pixel at row r, and column c

But what exactly is this dirrc(t) ?
need to express ray direction in terms of variables r
and c
Now need to set up camera, and then express dirrc
in terms of camera r and c

ttr
tdireyetr

tdirectionoriginray

rc

do +=
+=
+=

)(
)(

)(

Building the Ray

Building the Ray

Camera: Perspective
Viewing

Pixel Screen Coordinates

Calculate Pixel Position

Calculating Primary Rays

Given (in world coordinates)
Camera (eye point) location O
Camera view out direction (Zv)
Camera view up vector (Yv)
Distance to image plane (d)
Horizontal camera view angle (θ)
Pixel resolution of image plane (hres, vres)

Calculate set of rays (d) that equally samples
the image plane

Calculate Preliminary
Values

Camera view side direction (Xv)
Yv × Zv

Horizontal length of image plane (sj)
Next slide

Vertical length of image plane (sk)
sk = sj • (vres / hres)
Assume square pixels

Calculating sj
h = d • tan(θ/2)
sj = 2h
sj = 2d • tan(θ/2)

Calculate Preliminary
Values

Position of top left pixel (P0,0)
O + d ∗ Zv - (Sj/2) ∗ Xv + (Sk/2) ∗ Yv

All in world
coordinates!

Calculate Those Rays!

P0,0 + α Xv - β Yv sweeps out image plane

0 ≤ α ≤ Sj; 0 ≤ β ≤ Sk

for (j=0; j++; j < hres)
for (k=0; k++; k < vres) {

dj,k = (P0,0 + Sj∗(j/(hres-1)) ∗ Xv

- Sk∗(k/(vres-1)) ∗ Yv) - O;
d’j,k = dj,k / | dj,k | ;

Image[j,k] = ray_trace(O, d’j,k , Scene);
}

Parameters

X and Y resolution of image
Camera location & direction
Distance between camera & image plane
Camera view angle
Distance between pixels
These are not independent!
Goal → Choose your independent variables and
calculate your d’s

I recommend setting …

X and Y resolution of image
(hres, vres)

Camera location & orientation
O & Zv & Yv

Distance between camera & image plane
d (a positive scalar, e.g. 10)

Camera view angle
θ

Find Object Intersections
with rc-th ray

Much of work in ray tracing lies in finding
intersections with generic objects
Break into two parts

Deal with untransformed, generic (dimension 1) shape
Then embellish to deal with transformed shape

Ray generic object intersection best found by using
implicit form of each shape. E.g. generic sphere is

Approach: ray r(t) hits a surface when its implicit
eqn = 0
So for ray with starting point o and direction d

1),,(222 −++= zyxzyxF

0)(
)(

=+
+=

hittF
ttr

do
do

Ray Intersection with
Generic Plane

Generic Plane?
Yes! Floors, walls, in a room, etc
Generic plane is xy-plane, or z = 0
For ray

There exists a thit such that

Solving,
z

z
hitt

d
o

−=

0=+ hzz tdo

ttr do +=)(

Ray Intersection with
Generic Plane

Hit point Phit is given by

Numerical example?
Where does the ray r(t) = (4, 1, 3) + (-3, -5, -3)t hit
the generic plane?

Soln:

And hit point is given by

1
3

3
=

−
−=−=

z

z
hitt

d
o

)0,4,1(−=+ do

)/(zzhitP dodo −=

Ray-Sphere Intersection
G. Drew Kessler
Larry Hodges
Georgia Institute of
Technology

Ray/Sphere Intersection
(Algebraic Solution)

Ray is defined by R(t) = Ro + Rd*t where t >
0.

Ro = Origin of ray at (xo, yo, zo)
Rd = Direction of ray [xd, yd, zd] (unit vector)

Sphere's surface is defined by the set of points
{(xs, ys, zs)} satisfying the equation:

(xs - xc)2 + (ys - yc)2 + (zs - zc)2 - rs
2 = 0

Center of sphere: (xc, yc, zc)
Radius of sphere: rs

Possible Cases of
Ray/Sphere Intersection

1 2

3
4

5

1. Ray intersects
sphere twice with t>0

2. Ray tangent to
sphere

3. Ray intersects
sphere with t<0

4. Ray originates
inside sphere

5. Ray does not
intersect sphere

Solving For t

Substitute the basic ray equation:
x = xo + xd*t
y = yo + yd*t
z = zo + zd*t

into the equation of the sphere:
(x0 + xdt - xc)2 + (y0 + ydt - yc)2 + (z0 + zdt - zc)2 - rs

2 =
0

This is a quadratic equation in t: At2 + Bt + C
= 0, where

A = xd
2 + yd

2 + zd
2

B = 2[xd(x0 - xc) + yd(y0 - yc) + zd(z0 - zc)]
C = (x0 - xc)2 + (y0 - yc)2 + (z0 - zc)2 - rs

2

Note: A=1

Relation of t to
Intersection

We want the smallest positive t - call it ti

t0

t1

t1

t0
Discriminant = 0

Discriminant < 0

t1

t0

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−
=

2
4

2
4

2

1

2

0

ACBBt

ACBBt

t0

Actual Intersection

Intersection point,
(xi, yi, zi) = (xo+xd*ti, yo+yd*ti, zo+zd*ti)

Unit vector normal to the surface at this point is
N = [(xi - xc) / rs, (yi - yc) / rs, (zi - zc) / rs]

If the ray originates inside the sphere, N should be
negated so that it points back toward the center.

N N

Summary (Algebraic
Solution)

1. Calculate A, B and C of the quadratic intersection
equation

2. Calculate discriminant (If < 0, then no intersection)
3. Calculate t0
4. If t0 < 0, then calculate t1 (If t1 < 0, no intersection

point on ray)
5. Calculate intersection point
6. Calculate normal vector at point

Helpful pointers:
Precompute rs

2

Precompute 1/rs
If computed t is very small then, due to rounding error,
you may not have a valid intersection

Antialiasing

Raster displays have pixels as rectangles
Aliasing: Discrete nature of pixels introduces
“jaggies”

Antialiasing

Aliasing effects:
Distant objects may disappear entirely
Objects can blink on and off in animations

Antialiasing techniques involve some form of
blurring to reduce contrast, smoothen image
Three antialiasing techniques:

Prefiltering
Postfiltering
Supersampling

Prefiltering

Basic idea:
compute area of polygon coverage
use proportional intensity value

Example: if polygon covers ¼ of the pixel
use ¼ polygon color
add it to ¾ of adjacent region color

Cons: computing pixel coverage can be time
consuming

Supersampling

Useful if we can compute color of any (x,y) value on
the screen
Increase frequency of sampling
Instead of (x,y) samples in increments of 1
Sample (x,y) in fractional (e.g. ½) increments
Find average of samples
Example: Double sampling = increments of ½ = 9
color values averaged for each pixel

Average 9 (x, y) values
to find pixel color

Postfiltering

Supersampling uses average
Gives all samples equal importance
Post-filtering: use weighting (different levels of
importance)
Compute pixel value as weighted average
Samples close to pixel center given more weight

1/2

1/161/16

1/16

1/16 1/16 1/16

1/16

1/16

Sample weighting

References/Shamelessly
stolen

Kevin Suffern, Ray Tracing from the Ground up
David Breen, Drexel University CS 431/636 Advanced
Rendering Techniques
Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition

