CS 563 Advanced Topics in Computer Graphics Light Transport: Volume Rendering

by Dmitriy Janaliyev

Introduction

- The Light Transport Equation (LTE) equation that describes distribution of radiance in the scene
- Integrators objects (algorithms) that are responsible for finding numerical solution to the LTE
- Two basic classes of Integrators:
 - SurfaceIntegrator
 - VolumeIntegrator

- The equation of transfer equation that governs behavior of light in a medium that absorbs, emits and scatters radiation
- Integro-differential form describes how the radiance along a beam changes at a point in space
- Pure integral form describes the effect of participating media from infinite number of points along a line

- Can be derived by subtracting the effects of processes that reduce energy along the beam from those processes that increase energy along it
- The source term:

$$S(p, \mathbf{w}) = L_{ve}(p, \mathbf{w}) + \mathbf{S}_{s}(p, \mathbf{w}) \int_{S^{2}} p(p, -\mathbf{w}' \to \mathbf{w}) L_{i}(p, \mathbf{w}') d\mathbf{w}'$$

- $L_{ve}(p, \mathbf{W})$ emitted radiance
- $\boldsymbol{s}_{s}(\boldsymbol{p}, \boldsymbol{w})$ scattering probability

 $p(p, -w' \rightarrow w)$ - phase function

 $L_i(p, w')$ - incident radiance

The attenuation coefficient:

 $\boldsymbol{S}_t(\boldsymbol{p}, \boldsymbol{W})$

 $dL_o(p, \mathbf{w}) = -\mathbf{S}_t(p, \mathbf{w})L_i(p, -\mathbf{w})dt$

• The overall change in radiance at a point p' along a ray:

$$\frac{\partial}{\partial t}L_o(p, \mathbf{w}) = -\mathbf{s}_t(p, \mathbf{w})L_i(p, -\mathbf{w}) + S(p, \mathbf{w})$$

 To get pure integral form of the above equation assume that the rays have infinite length:

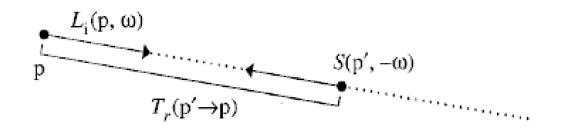
$$L_i(p, \mathbf{w}) = \int_0^\infty T_r(p' \to p) \cdot S(p', -\mathbf{w}) dt$$

$$L_i(p, \mathbf{w}) = \int_0^\infty T_r(p' \to p) \cdot S(p', -\mathbf{w}) dt$$

Where $p' = p + t \mathbf{w}$

 $T_r(p' \rightarrow p)$ - beam transmittance from p' to the ray's origin

$$T_r(p' \to p) = e^{-s_t d}$$



Basic terms of the equation of transfer

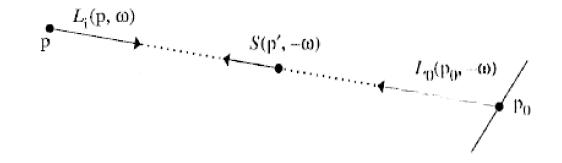
 More generally if a ray (p,w) intersects a surface at p₀ some point the integral equation of transfer is:

$$L_i(p, \mathbf{w}) = T_r(p_0 \to p) L_0(p_0, -\mathbf{w}) + \int_0^t T_r(p' \to p) \cdot S(p', -\mathbf{w}) dt'$$

 $p_0 = p + t w$ - the point on the surface

$$p' = p + t'w$$
 - points along the ray

 $L_0(p_0, -w)$ - radiance outgoing from the surface



For equation of transfer for a finite ray

Volume Integrator Interface

- Integrator → VolumeIntegrator
 - Preprocess()
 - RequestSamples()
 - Li()
 - Transmittance()
- To compute the total radiance arriving at the ray origin:
 - The surface integrator computes outgoing radiance L_0 at the ray's intersection point
 - The volume integrator's Transmittance() computes the beam transmission T_r
 - The volume integrator's Li() gives the radiance along the ray due to participating media
 - The sum of L_0T_r and the additional radiance from participating media gives the total radiance arriving at the ray origin

- Uses simplified equation of transfer
 - Ignoring in-scattering term

$$L_i(p, \mathbf{w}) = T_r(p_0 \to p) L_0(p_0, -\mathbf{w}) + \int_0^t T_r(p' \to p) \cdot S(p', -\mathbf{w}) dt'$$

$$S(p, \mathbf{w}) = L_{ve}(p, \mathbf{w}) + \mathbf{s}_{s}(p, \mathbf{w}) \int_{S^{2}} p(p, \mathbf{w}' \to \mathbf{w}) L_{i}(p, \mathbf{w}') d\mathbf{w}'$$

$$L_i(p, \mathbf{w}) = T_r(p_0 \to p) L_0(p_0, -\mathbf{w}) + \int_0^t T_r(p' \to p) \cdot L_{ve}(p', -\mathbf{w}) dt'$$

- Implemented with EmissionIntegrator interface
- Monte-Carlo integration is used by Transmittance() and Li() methods
- Number of samples taken to evaluate estimates of integrals depends on the distance the ray travels in the volume
- The ray is divided into segments of the given length and a single sample is taken in each of the segments

- Transmittance() implementation
 - VolumeRegion's Tau() method computes optical thickness
 - Feed volumeRegion->Tau() with step size and sample value
 - Return Exp(-tau)
- Li() implementation
 - If the ray enters the volume at $t = t_0$ Li() can consider integral

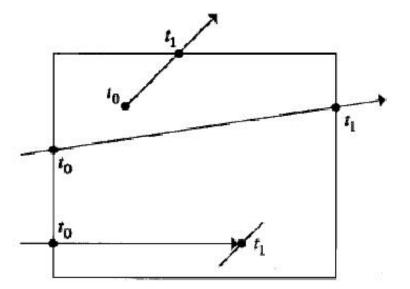
$$\int_{t_0}^{t_1} T_r(p' \to p) \cdot L_{ve}(p', -\mathbf{W}) dt'$$

where t_1 is the minimum of the parametric offset where the ray exits the volume and the offset where it intersects a surface

Li() implementation

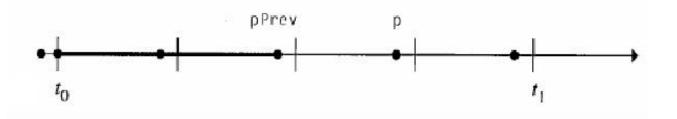
• The integral can be found by uniformly selecting random points along the ray between t_0 and t_1 and evaluating the estimator:

$$\frac{1}{N}\sum_{i}\frac{T_r(p_i \to p)L_{ve}(p_i, -\mathbf{W})}{p(p_i)} = \frac{t_1 - t_0}{N}\sum_{i}T_r(p_i \to p)L_{ve}(p_i, -\mathbf{W})$$

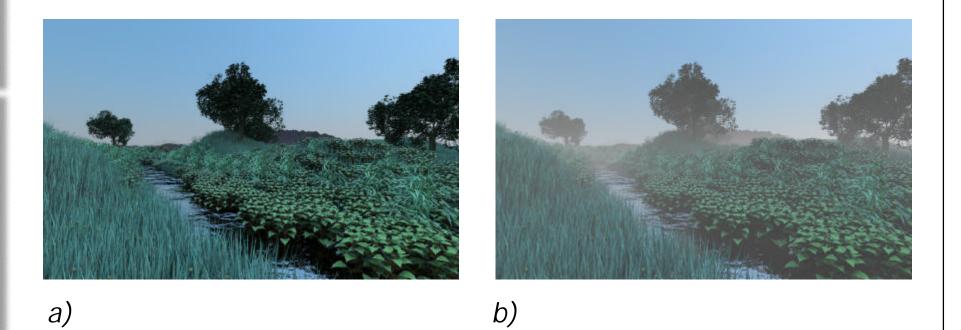


- Additional implementation details:
 - For efficient evaluation of beam transmittance T_r values the points p_i are sorted and multiplicative property of T_r is used to incrementally compute T_r from its value for the previous point:

$$T_r(p_i \to p) = T_r(p_{i-1} \to p)T_r(p_i \to p_{i-1})$$



 Ray stepping is randomly terminated with Russian roulette when transmittance is sufficiently small



The scene rendered (a) without any participating media and (b) with fog and EmissionIntegrator

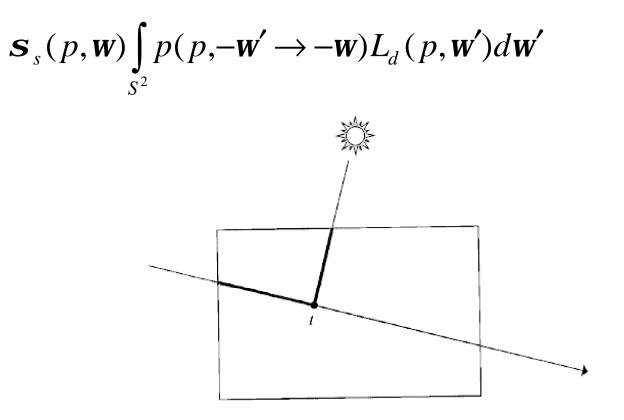
Single Scattering Integrator

- SingleScattering integrator considers the incident radiance due to direct illumination ignoring one due to multiple scattering
- Li() method evaluates integral:

$$\int_{0}^{t} T_{r}(p' \to p) \cdot (L_{ve}(p', -\mathbf{w}) + \mathbf{s}_{s}(p', \mathbf{w}) \int_{S^{2}} p(p', -\mathbf{w}' \to -\mathbf{w}) L_{d}(p', \mathbf{w}') d\mathbf{w}') dt'$$

- More computationally expensive
- Allows "beams of light" effects

Single Scattering Integrator



Evaluation of direct lighting contribution

Single Scattering Integrator

The scene rendered with Single scattering volume integrator

References

- Matt Pharr, Greg Humphreys "Physically Based Rendering: From Theory to Implementation"
- Images were taken from the companion CD or scanned from the book