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Monte Carlo Rendering with Natural Illumination

Category: Research

Figure 1: Two scenes rendered with our technique using environment maps for illumination with 4 pixel samples and 16 light samples per
pixel sample. Preprocessing the environment map before rendering required under 0.03 seconds on a modern CPU and a negligible fraction
of rendering time was spent selecting light samples.

We present a new sampling technique for using environment maps
for illumination in a Monte Carlo ray tracer, based on directly im-
portance sampling the continuous two-dimensional distribution of
illumination as a function of direction. Unlike previous techniques
for high-quality rendering with environment maps, our method re-
quires very little precomputation, is easy to implement, and is com-
patible with existing approaches for Monte Carlo variance reduc-
tion. We achieve equivalent or lower error in rendered images than
previous methods and robustly handle a wider variety of reflection
models for the same amount of rendering time, though our tech-
nique uses three orders of magnitude less precomputation. For in-
teractive rendering, our sampling methods can be used to generate
a set of directional light sources that accurately approximate the
environment map’s illumination in a few hundredths of a second.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: environment maps, illumination, Monte Carlo integra-
tion, importance sampling

1 Introduction

Image-based lighting can substantially improve the realism of ren-
dered images when used in place of idealized approximations like
point and directional lights. This is especially true when the lighting
imagery is captured from a real environment and accurately repre-
sents high dynamic range lighting features. Unfortunately, render-
ing images with this light representation is computationally expen-
sive, since it is necessary to evaluate the reflection integral over
the entire sphere of incident illumination, rather than computing a

sum over a set of discrete light sources. The reflection integral is
impossible to evaluate analytically when including accurate visibil-
ity computations and arbitrary geometry, incident illumination, and
reflection models, so some form of numerical integration or other
approximation must be used.

This paper describes a new sampling technique for Monte Carlo
lighting calculations with environment map light sources. It han-
dles general reflection models and scene geometry and efficiently
computes high-quality results (see Figure 1). Our technique uses
the lighting image to define a two-dimensional probability density
function over the sphere of directions and directly samples direc-
tions according to this distribution. This has a number of advan-
tages over previous techniques: it is very easy to implement, uses
little additional storage, and requires approximately three orders of
magnitude less precomputation time. For environments with many
small bright light sources, our technique produces results that are
both visually and statistically similar to previous techniques, and
for environments where important illumination is arriving from a
wider range of directions, our technique gives less error. In addi-
tion, our approach is unbiased and fits naturally into classic Monte
Carlo integration methods, so it is possible to apply a number of
effective variance reduction methods that are less easily used with
previous techniques, such as adaptive sampling, low-discrepancy
sampling patterns, and multiple importance sampling.

2 Background and Previous Work

Image-based lighting (IBL) dates to Blinn and Newell, who used
environment maps to shade perfectly specular surfaces [Blinn and
Newell 1976]. Williams and Greene described how to filter envi-
ronment maps to reduce aliasing artifacts [Williams 1983; Greene
1986]. Miller and Hoffman were the first to use environment maps
to illuminate non-specular objects [Miller and Hoffman 1984].

Debevec’s work on capturing illumination from real-world environ-
ments has recently rekindled interest in image-based lighting [De-
bevec 1998]. He first used theRadiancerendering system [Ward
1994], applying the lighting image as a texture map onto distant ge-
ometry and usingRadiance’s built-in Monte Carlo sampling, which
has no specialized sampling methods for environment illumination.
He reported that high sampling rates were necessary to compute
high-quality imagery. Cohen and Debevec later developedLight-
Gen, which uses thek-means clustering algorithm to convert envi-
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ronment maps into a set of directional light sources in an offline
preprocess, taking a few minutes to create a hundred lights from a
low-resolution environment map [Cohen and Debevec 2001]. Di-
rectional lights like these are not a suitable representation for ren-
dering very glossy surfaces.

More recently, a number of techniques have been developed for
stratifying environment maps and preintegrating the illumination
within each stratum, with strata chosen to achieve higher sampling
density in areas with relatively bright illumination. Kollig and
Keller use Lloyd’s relaxation algorithm to choose a fixed number
of strata and compute reflection from a surface with a quadrature
rule [Kollig and Keller 2003]. They reported preprocessing times
of 20–75 seconds per environment map.

Agarwal et al. have developed a technique called structured impor-
tance sampling (SIS), where strata are chosen based on an analy-
sis of expected variance due to illumination variation and visibil-
ity [Agarwal et al. 2003]. Their algorithm first computes a small
set of nested brightness levels. Then, the total number of desired
samples are divided among the levels based based on a statistical
analysis and finally the deterministic Hochbaum-Shmoys algorithm
is used to place the sample points within each level. Each sample
point gives rise to a stratum corresponding to its Voronoi cell. Their
method requires roughly 50–100 seconds of precomputation for a
typical environment map.

Cohen has developed a technique based on an adaptive tessellation
of the unit sphere [Cohen 2003]. For each of a set of surface normal
directions, he integrates cosine-weighted radiance over each spheri-
cal triangle. Then, given a point to be lit and its surface normal, this
information is used to derive a sampling method. This approach is
only applicable to reflection from Lambertian surfaces, and requires
approximately 20 minutes of precomputation.

There has recently been great interest in interactive IBL with com-
plex materials [Ramamoorthi and Hanrahan 2002; Sloan et al.
2002; Ng et al. 2003]. These techniques project the lighting onto a
basis function for fast evaluation of the reflection equation, seeking
to find methods that are fast enough for real-time use, rather than to
supporting completely general scenes and reflection models.

2.1 Monte Carlo Direct Lighting

We would like to estimate the value of the direct lighting equation

Lo(p,ωo) =
∫
S 2

f (p,ωi → ωo)V(p,ωi)Ld(p,ωi)|cosθi |dωi ,

whereLo(p,ωo) is the outgoing radiance at a pointp in direction
ωo, S 2 is the unit sphere,f is the bidirectional scattering distri-
bution function (BSDF),V is a binary visibility term that is zero if
the ray(p,ωi) intersects scene geometry and one otherwise, andLd
is the incident radiance arriving alongωi at p. Here, we consider
only the direct illumination component of radiance from the envi-
ronment map, and assume that other global illumination algorithms
are used for multiply scattered illumination if necessary. We also
make the usual assumption in IBL thatLd is a function of direction
only (i.e., the light source is infinitely far away).1

Monte Carlo integration has been shown to be an effective tech-
nique for evaluating the direct lighting equation in graphics, han-
dling arbitrary BSDF and light source models as well as general
scene geometry. See for example Jensen et al.’s course notes for
information about Monte Carlo integration in computer graphics,
including references to further resources [Jensen et al. 2003]. The

1The techniques described in this paper could easily be applied to a
spherical or cube light source with finite radius that surrounded the scene.

Monte Carlo estimatorgives the expected value of an integral of a
function f as the average ofN separate estimates,

E

[∫
f (x)dx

]
=

1
N

N

∑
i=1

f (Xi)
p(Xi)

,

whereXi are random variables drawn from some sampling distri-
bution p. Mathematically, any valid probability distribution can be
used as long asp(x) > 0 wheneverf (x) 6= 0.

The choice of sampling distributionp can dramatically affect the
amount of variance in the Monte Carlo estimate.Importance sam-
pling is a variance reduction technique that draws samples from
a distributionp that is similar to f . When the sampling distribu-
tion matches the shape of the integrand, importance sampling can
be an extremely effective optimization. However, if the sampling
distribution under-samples locations where the integrand’s value is
large, variance increases substantially. Such a poorly chosen sam-
pling distribution can substantiallyincreasevariance. For a modern
discussion of this issue, see Owen and Zhou [2000].

Multiple importance sampling (MIS) is a generalization of impor-
tance sampling that addresses this problem by combining samples
drawn from multiple distributions [Veach and Guibas 1995; Veach
1997]. The key property that a sampling algorithm must possess
to be compatible with MIS is that it must be possible to compute
the probability densityp(Xi) of generating any given sample value
Xi with that technique, even if it was generated with some other
method. We will not present the details of how to use this density
in MIS, but instead refer the reader to Veach’s original papers.

In summary, in order to compute estimates of the direct lighting in-
tegral, we would like sampling strategies to find directionsωi from
distributions that match components of the integrand. Because real-
world illumination ranges over multiple orders of magnitude in in-
tensity, theLd term generally is the main contributor to the shape of
the integrand. Therefore, importance sampling from its distribution
is an efficient way to compute estimates of reflected radiance.

3 Sampling Environment Maps

In the derivation below we will assume that illumination is repre-
sented in an image with a(θ ,φ) “latitude-longitude” parameteri-
zation given byx = r sinθ cosφ , y = r sinθ sinφ , andz = r cosθ .
Given a directionω, the radiance valueLd(ω) can be found by
inverting the spherical coordinate formulas to find(θ ,φ) from a di-
rectionω = (x,y,z) and then interpolating among the nearby texels
in the image map (we use bilinear interpolation).2

This map representation has a simple relationship to the angles
(θ ,φ), but it is distorted when mapped to the sphere of directions,
especially at the poles of the sphere.3 Due to this distortion, we
cannot directly sample from the(θ ,φ) distribution, since directions
near the poles of the sphere would be oversampled. Trying to define
a sampling distribution directly on the unit sphere is also difficult,
since bilinear interpolation in(θ ,φ) yields a non-linear interpolant
on the surface of the sphere.

Our technique approaches this problem by sampling from a 2D
(θ ,φ) distribution, the most convenient domain to sample from, but
then transform(θ ,φ) to the appropriate density on the unit sphere
p(ω). There are three main steps to our approach:

2If the source image is in a different representation like a light probe or
cube map, it can be warped and resampled into this representation, or the
methods used here could be applied to other representations.

3This is a problem withanymapping from a region on the plane to the
surface of a sphere. See Snyder and Mitchell’s report for an analysis of
distortion in environment map representations [Snyder and Mitchell 2001].

2



Online Submission ID: 483

precompute1D(f[nf], out pf[nf], out Pf[nf+1]):
I = sum(f[0] ... f[nf-1])
for (i = 0 to nf-1):

pf[i] = f[i] / I
Pf[0] = 0
for (i = 1 to nf-1):

Pf[i] = Pf[i-1] + pf[i-1]
Pf[nf] = 1

sample1D(pf[nf], Pf[nf+1], unif, out x, out p):
i = binarySearch(Pf, unif) // Pf[i]<=unif<Pf[i+1]
t = (Pf[i+1] - unif) / (Pf[i+1] - Pf[i])
x = (1-t) * i + t * (i+1)
p = pf[i]

Figure 2: Pseudocode for precomputing the PDFpf and CDFPf for
a piecewise constant 1D function defined by an array of valuesf[]
and sampling from its distribution. Using the precomputed infor-
mation, the sampling function transforms a uniform random vari-
ableξ to a sample from the distribution, returning both the valuex
and the value of the PDFp(x).

• Define a piecewise constant probability densityp(θ ,φ) based
on the environment map’s luminance distribution.

• Apply a sampling method that transforms random numbers
over[0,1]2 to samples drawn fromp(θ ,φ).

• Derive a probability density function on the unit spherep(ω)
based on the probability density over(θ ,φ).

These three steps allows us to sample directionsω from a distribu-
tion that is close toLd, computep(ω), and apply either the standard
Monte Carlo estimator or the MIS estimator to evaluate the reflec-
tion equation with low error thanks to a sampling distribution that
generally matches the integrand well.

Before we describe the algorithm in full, we will first present the
necessary building blocks from probability theory. For a more com-
plete introduction to probability distributions, see Ross [2002], and
for a more graphics-centric view of these topics see Veach’s the-
sis [1997] or Jensen et al.’s course notes [2003].

3.1 Sampling 1D Piecewise Constant Functions

We will represent piecewise constant functionsf (x) as sets of val-
uesfi wherei is an integer andfi gives the value of the function over
the range[i, i+1). Given such a function, the integralI f =

∫
f (x)dx

is easily seen to be∑i fi . To find the probability distribution func-
tion p (PDF) that describesf , we must scalef so that thep inte-
grates to one, obtainingpf (x) = f (x)/I f = f (x)/∑i fi .

The cumulative distribution function (CDF) forf , Pf (x) =∫ x
0 pf (x′)dx′, is a piecewise linear function wherePf (0) = 0,

Pf (n) = 1, and for integeri, Pf (i) = Pf (i−1)+ pf (i−1) = Pf (i−
1)+ fi−1/I f .

To generate a sample from this distribution using a uniform random
numberξ, we must findx such thatPf (x) = ξ. This can be done
efficiently by precomputing the CDF for integeri values using the
recurrence above and performing a binary search fori such that
Pf (i)≤ ξ < Pf (i +1). Thenx can be found by linearly interpolating
betweeni andi +1 by amountt = (ξ−Pf (i))/(Pf (i +1)−Pf (i)).
This process is summarized in Figure 2.

3.2 Sampling 2D Piecewise Constant Functions

Drawing a sample from a a 2D distributionp(u,v) is more compli-
cated than sampling a 1D function (unlessp is separable into the

precompute2D(f[nu][nv], out pu[nu], out Pu[nu+1],
out pv[nu][nv], Pv[nu][nv+1]):

for (u = 0 to nu-1):
precompute1D(f[u], pv[u], Pv[u])
colsum[u] = sum(f[u][0] ... f[u][nv-1])

precompute1D(colsum, pu, Pu)

sample2D(pu[nu], Pu[nu+1], pv[nu][nv], Pv[nu][nv+1],
unif1, unif2, out u, out v, out pdf):

sample1D(pu, Pu, unif1, u, pdfu)
sample1D(pv[nu*u], Pv[nu*u], unif2, v, pdfv)
pdf = pdfu * pdfv

Figure 3: Precomputation and sampling pseudocode for 2D sam-
pling. For precomputation, we first compute all of the conditional
densities into thepv andPv arrays, and then use those to precom-
pute the marginal density intopu andPu. Sampling is done by first
sampling the 1D marginal density, and using that value to choose
the appropriate 1D conditional density to sample.

product of two 1D functions inu andv). For general multidimen-
sional joint probability distributions, each dimension must be sam-
pled in turn, based on the values chosen for previous dimensions.
Given a 2D density functionp(u,v), themarginal density function
pu(u) is obtained by “integrating out” thev dimension:

pu(u) =
∫

p(u,v)dv.

pu(u) can be thought of as the density function foru alone; more
precisely, it is the average density for a particularu over all possible
v values. Theconditional density function pv(v|u) is the density
function forv given that some particularu has been chosen,

pv(v|u) =
p(u,v)
pu(u)

.

To sample from a non-separable 2D joint distribution, one must
first compute the marginal density and draw a sample from that
density using standard 1D techniques such as the one described in
the previous section. Once that sample is known, the corresponding
conditional density function is obtained and sampled, again using
standard 1D techniques.

For a piecewise constant 2D distribution, this process is particu-
larly straightforward. Consider a functionf (u,v) defined by a set
of nunv values fi, j where fi, j gives the value off over the range
[i, i + 1)× [ j, j + 1). The joint 2D distribution that describesf ’s
distribution isp(u,v) = f (u,v)/

∫∫
f (u,v)dudv= f (u,v)/I f , where

I f = ∑i ∑ j fi, j . The marginal densitypu(u) is easily found as a sum
of fi, j values,pu(u) =

∫
p(u,v)dv= ∑ j fi, j/I f , wherei ≤ u< i +1.

Note thatpu(u) is itself a piecewise constant function that can be
quickly computed in a preprocessing step, and thusu samples can
be taken as described in the previous section.

Given such au sample, the conditional densitypv(v|u) is
( fi, j/I f )/pu(u). If the piecewise constantpu(u) function is rep-
resented as a set of valuesgi with i ≤ u < i +1, we havepv(v|u) =
( fi, j/I f )/gi , itself a piecewise constant function that can be sam-
pled with the one-dimensional approach. This is summarized in the
pseudocode in Figure 3.

3.3 Transforming Between Distributions

It is frequently the case that we are given a multi-dimensional ran-
dom variableX that was sampled from some distributionp(X) (e.g.,
a uniform distribution over[0,1]2), but we would like to transform

3



Online Submission ID: 483

this variable to a random variableX′ over some other domain (e.g.,
the surface of the unit sphere). It is easy to compute the density
p′(X′) of the new random variable in terms of the original density
p(X) and the bijectionT that transformsX → X′. The probability
density of the new random variableX′ can be shown to be

p′(X′) = p′(T(X)) =
p(X)
|JT(X)|

, (1)

where|JT | is the absolute value of the determinant ofT ’s Jacobian,∣∣∣∣∣∣∣
∂T1/∂x1 · · · ∂T1/∂xn

...
...

...
∂Tn/∂x1 · · · ∂Tn/∂xn

∣∣∣∣∣∣∣ ,
andTi are defined byT(x) = (T1(x), . . . ,Tn(x)).

3.4 Our Algorithm

Bringing these techniques together, our sampling algorithm creates
a piecewise constant function over(θ ,φ) by applying a slight Gaus-
sian blur to the image and computing pixel luminances to define a
piecewise-constant functionf (u,v). We set the number of function
values fi, j from the original map resolution, though a lower res-
olution could be used as well. We then precompute the marginal
density pu(u) by summing the values in the columns of the im-
age and normalizing byI f . Finally, we find the piecewise constant
conditional densities for each column as shown in Figure 3. This
precomputation requires less than 100 lines of C++ code.

Given a pair of uniformly distributed random variables(ξ1,ξ2) over
[0,1]2, we can draw a sample from the precomputed densities using
the sampling algorithm in Figure 3, which simultaneously gives a
(u,v) value and the value of the PDFp(u,v). The (u,v) sample
is mapped to a direction(θ ,φ) on the unit sphere by scaling by
(π/nu,2π/nv) and then spherical coordinates give a directionω =
(x,y,z).

We also need to convert the probability density for sampling(u,v)
to one expressed in terms of solid angle on the sphere using the
transformation from Section 3.3. Consider the functiong that maps
from (u,v) to (θ ,φ), g(u,v) = (πu/nu,2πv/nv). The absolute value
of the determinant of the Jacobian|Jg| is 2π2/(nunv). Applying
Equation 1,p(θ ,φ) = p(u,v)nunv/2π2.

Using the definition of spherical coordinates, the absolute value of
the Jacobian for the mapping from(r,θ ,φ) to (x,y,z) is r2sinθ .
Since we are interested in the unit sphere,r = 1, and again ap-
plying Equation 1 to find the final relationship between probability
densities in terms of the probability density for the sample from the
2D piecewise constant function to the direction on the sphere,

p(ω) = p(u,v)
nunv

2π2sinθ
.

This is the key relationship for applying our technique: it lets us
sample from the piecewise constant distribution and transform the
sample and its probability density to the unit sphere. Because we
have access to this probability density over the appropriate measure,
we can easily apply multiple importance sampling if desired.

The above algorithm gives a correct sampling technique, but we can
improve it slightly by multiplying eachfi, j value by a sinθ term
to account for the latitude-longitude parameterization’s distortion.
This is still a valid sampling distribution, though we will (correctly)
tend to take fewer samples near the poles. Note that it is still neces-
sary to include the sinθ term in the density conversion even if this
improvement is applied; the transformation terms do not depend on
the density, just the relationship between domains.

(a) (b) (c)

(d) (e) (f)

Figure 4: A sampling of images from our experiments. The scene is
a zoomed-in portion of the scene in Figure 8, using a Cook-Torrance
BRDF and lit with the Eucalyptus grove map. Top row: specu-
lar exponent of 2.5. (a) Reference image. (b) Our light sampling
method. (c) Structured importance sampling. Bottom row: specu-
lar exponent of 100. (d) Reference image. (e) Multiple importance
sampling using our light sampling algorithm. (f) Structured impor-
tance sampling. 64 samples were taken for all images.

4 Results

In order to evaluate the effectiveness of our sampling technique,
we computed theL2 error of images rendered with a number of
techniques against a high quality reference image. For these ex-
periments, we rendered the scene shown in Figure 4 with a Cook–
Torrance BRDF. This scene incorporates a variety of surface orien-
tations so that different sections of the environment map will be im-
portant for different image pixels. It also exhibits complex visibility
and shadowing, so that a sampling method that suffered from exces-
sive clumping of samples in bright regions would perform poorly.

The three approaches we compared were: importance sampling
from the light’s distribution using our technique, multiple impor-
tance sampling with half of the samples taken from the light’s dis-
tribution and half taken from the BRDF’s, and structured impor-
tance sampling.4 For the approaches based on our sampling tech-
nique, we used randomized low-discrepancy point generated with
Kollig and Keller’s technique [2002] as(ξ1,ξ2) values for sampling
directions from the light and BRDF distributions. For the struc-
tured importance sampling comparisons, we used the preintegrated
illumination within each stratum and jittered the directions of the
shadow rays traced within the cone of directions subtended by the
stratum. Later in this section we will compare our technique to SIS
for generating a set of directional lights.

For our tests, we used two environment maps downloaded from
www.debevec.org/Probes: Galileo’s tomb and the Eucalyptus
grove, both at 1024×512 resolution (results when using other maps
were similar). These maps are representative of the two most com-
mon (and challenging) types of environment maps: those with the
majority of their illumination concentrated in a set of small bright
regions (Galileo), and those with illumination spread out over a
broader area while still having substantial areas with low contribu-
tion (Eucalyptus). Our sampling technique required less than 0.03
seconds of preprocessing for these environment maps on a 2.8GHz

4We also did experiments with sampling from the BRDF’s distribution
alone, but for environment map illumination this was only competitive for
highly glossy surfaces and otherwise had significantly higher error, so we
have not included those results here.
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Figure 5: Graphs showing theL2 error for images of the test scene
with the three sampling techniques as the glossiness of the surface
being rendered varies, using 64 light samples per pixel. The left
graph is Galileo’s tomb, and the right is the Eucalyptus grove. Our
method consistently performs as well as or better than structured
importance sampling. For very glossy surfaces, applying multiple
importance sampling is the most effective approach.

Pentium 4 CPU.

Figure 5 compares theL2 image error of the three techniques for
images rendered with 64 light samples per pixel. For the Galileo’s
tomb environment map, SIS and our method give similar error, with
slightly less from SIS. For the Eucalyptus grove, our technique has
less error than SIS. For all tests that we ran, multiple importance
sampling was only better when the object was very glossy. It is
likely that adaptively assigning proportions of samples to the light-
ing and the BRDF based on the object’s reflection properties would
make MIS an appropriate default for all scenes.

4.1 Discussion

In addition to requiring very little preprocessing, the time spent gen-
erating samples from the light source distribution in our method is
negligible: each sample requires only two binary searches of less
than ten comparisons each, and a few trigonometric function eval-
uations. For scenes with complex geometry and shading, the time
spent on sampling is a tiny fraction of overall rendering time.

One reason for the low error of images computed with our method
is that we can leverage classic Monte Carlo variance reduction tech-
niques. Because our method transforms random variables defined
over [0,1]2 to directions on the sphere while preserving stratifi-
cation reasonably well, the low-discrepancy point set we use for
sampling gives a well-stratified set of spherical directions without
any additional computation. It is well known that preserving good
distribution properties when transforming between domains yields
lower variance [Shirley and Chiu 1997]. Other approaches cannot
take advantage of low discrepancy samples as easily or can be strat-
ified in only one dimension, and thus cannot take advantage of the
variance reduction afforded by these sampling patterns. In partic-
ular, the straightforward approach of transforming the environment
map into a large set of directional lights and sampling from that 1D
distribution does not preserve stratification on the sphere.

In order to apply multiple importance sampling, it is necessary to
be able to compute the probability densities associated with each
sampling method, even if the sample point is givena priori. It is
likely that MIS would help other light source sampling methods
handle glossy objects as it does our method, but it is not clear how
to compute the appropriate probability densities for existing tech-
niques such as SIS or Kollig and Keller’s.

We have found that sampling the light’s distribution does not re-

Figure 6: 128 sample points placed in the St. Peters environment
map by warping a low discrepancy point set in the unit square to the
distribution of illumination using our technique. Note that samples
are more likely to be taken in bright parts of the environment map,
though there is not excessive clumping of samples in bright areas.

sult in an excessive number of samples allocated to very bright re-
gions of the image; Figure 6 shows 128 sample points generated
by our algorithm in the St. Peters environment map. Additionally,
any clumping that does occur can be offset by our compatibility
with multiple importance sampling, since half of the samples will
be drawn from BSDF’s distribution and thus cannot clump due to
properties of the lighting.

Most previous techniques for sampling environment maps have
been able to turn the incident lighting into a set of directional lights
for fast, zero-variance rendering. Our methods are compatible with
this approach, as shown in Figure 8. Thanks to the efficiency of
our algorithm, a set of directional lights can be found in real time,
making it possible, for example, to use real-time video [Kang et al.
2003] as input for GPU-based interactive rendering system.

5 Conclusion and Future Work

We have presented a new sampling algorithm for image-based light-
ing in Monte Carlo rendering. Our algorithm is unbiased, easy to
implement, and is fully compatible with standard Monte Carlo vari-
ance reduction techniques such as low discrepancy sampling and
multiple importance sampling. It computes results with similar or
less error than previous techniques for the same number of sam-
ples while requiring precomputation time measured in hundredths
of seconds, rather than tens of seconds or minutes. The ability to
use it with multiple importance sampling improves its robustness in
the presence of highly specular reflection.

We have not investigated further optimization techniques for reduc-
ing the number of light samples taken (for example, like Agarwal
et al.’s adaptation of Ward’s probabilistic handling of large numbers
of light sources [Ward 1991].) However, we believe that ideas like
these can equally well be applied to our technique, with the poten-
tial for similar substantial reductions in the number of rays traced.

Preliminary experiments with using tone mapping algorithms to
slightly reduce the dynamic range of the data in the sampling dis-
tribution suggest that this may provide a successful way to improve
stratification over the area of the environment map. Using an effi-
cient algorithm such as the one described by Reinhard et al. [2002]
would likely be most appropriate. This may provide a way to fur-
ther reduce the error with our approach by better sampling the visi-
bility component of the reflection equation.
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