
CS 563 Advanced Topics in
Computer Graphics

Image Based Rendering

by Suman Nadella

Outline

§ What
§ Why
§ How
§ Methods
§ Applications
§ References
§ Conclusion

WHAT

Properties

§ Images are the primary source of Data
§ Replace or enhance Polygon Models
§ Complexity Number Of Pixels
§ Precomputation capability

∝

WHY

Driving Factors

§ Make it as real as possible
§ Fast, Faster … Fastest (Fastestest?)
§ Exploit LOD
§ Industry trends
§ FFF (Fire, Fog, Free forms)
§ Give Computer Vision a chance !

HOW

§ Pre calculate Images to isolate the scene complexity
from rendering time

§ Utilize the inherent coherence in the scene

Topics to Discuss

§ Methods
§ Sprites
§ Billboards
§ Impostors

§ Applications
§ Lens Flare and Bloom
§ Particle systems
§ Depth Sprites
§ Hierarchical Image Caching
§ Full Screen Billboarding
§ Skyboxes
§ Image Processing
§ Volume Rendering

Sprites

§ Basic IBR – Image that moves around on the screen
§ Classic Example – Mouse Cursor
§ Rendered on a polygon
§ Alpha channel
§ No Warping / Projection
§ Animation?

§ Example

Layered Sprites

§ Scene as a series of Layers
§ Each layer has depth associated
§ Render Back-to-front (avoid Z buffer)
§ Zoom – easy to handle
§ Camera movement perpendicular to the scene
§ Change of view
§ When to warp / When to recompute

Example

Chicken Crossing (Andrew Glassner , SIGGRAPH 96)

§ 3D animated film rendered real-time
§ Image Layers on Talisman Simulator

Example

Chicken Crossing (Andrew Glassner , SIGGRAPH 96)

§ 3D animated film rendered real-time
§ Image Layers on Talisman Simulator

Quick Note:

Interpenetrating Objects

Billboarding

§ Orienting polygon based on View Direction
§ Billboarding + Alpha + Animation = free forms

(smoke, fire, explosions, clouds etc.)

Lets talk about …

§ Basic Math
§ Types of Billboards

Example

§ Just to sustain interest …
§ Screen shots of billboards in action

Real time cloud rendering, Mark J. Harris

How to Billboard - 1

§ Surface normal – n, Up direction – u
Describe the orthonormal transforms

§ Anchor Location (center)
To establish its position in space

How to Billboard - 2

§ u and n need not be perpendicular

§ Fix one vector and find the perpendicular axes
(say n in this case)

§ Find r vector perpendicular to u and n (r = u x n)

§ Now find u’ perpendicular to both r and n (u’ = n x r)

§ Rotation Matrix M = (r, u’, n)

Types of Billboards

§ Differentiated based on which vector is kept constant

§ Screen Aligned Billboard

§ World Aligned Billboard

§ Axial Billboard

Screen Aligned Billboard

§ Image always parallel to screen with constant up
vector

§ Surface normal = negation of view normal
§ Up vector = camera’s up vector
§ Fixed n and u, thus fixed r
§ Same for all billboards of this type

§ Uses: Text , Lens Flare etc

World Oriented Billboard

§ Screen aligned works good for circular sprites
§ Up vector doesn’t show any effect

§ Orientation should be with respect to its world
position rather than camera

§ Use world up vector and same normal
§ Same matrix again for all sprites…
§ Good/Bad?

Perspective Projection…

View Point Billboard - 1

§ If camera’s FOV does not match eye’s FOV – warping

§ Ignorable for small FOV / small Sprites , if not …

§ normal = vector (Billboard center to viewer’s position)

A view of four spheres, with a wide field
of view. The upper left is a billboard
texture of a sphere, using view plane
alignment. The upper right billboard is
viewpoint oriented. The lower row shows
two real spheres.

View Point Billboard - 2

§ Distortion shows up in view point orientation

§ Looks similar to how real images get distorted

§ Good for impostors

Axial Billboard - 1

§ Cylindrical Symmetry (trees, laser beams etc)
§ Does not face straight-on towards viewer
§ Rotate around some world space axis and align to

face user as much as possible
§ Up vector is fixed, and view point direction is the

adjustable vector

Axial Billboard - 2

§ Tree example
§ Single billboard v/s solid surface tree
§ Up vector along tree trunk

§ What if …

§ See it from top, will look like a cardboard cutout

All in One

http://www.cs.unc.edu/~andrewz/twa/screenshots.html

All in One

http://www.cs.unc.edu/~andrewz/twa/screenshots.html

Impostors

Impostors

§ Well, that was an impostor of an impostor !

§ The real one…

Impostors Made Easy – William Damon, Intel

No Impostors

With Impostors

Impostors

§ Billboard created on fly
§ Render a complex object into image texture
§ Mapped onto Billboard
§ Few instances of Object / frames before update

§ Why create them?

Impostors - 1

§ Fast to draw

§ Closely resemble the object

§ Reuse for several viewpoints located close together

§ Best for static and distant objects
§ Movement of object diminishes with distance from viewer

§ Overcome low LOD constraints, since a high quality
imposter can be created

§ How to make them?

Impostors - 2

§ Off-screen buffer
§ Initialize alpha channel to 0.0 (transparent)
§ Set to 1.0 when object is present
§ Render the object with viewer looking at the center

of bounding box
§ Size of Impostor’s Quad = bounding box
§ New versions – render directly to texture (RGB)
§ Once rendered, normal points towards viewer

(viewpoint oriented)
§ Forsyth – project texture onto bounding box

α

Impostors - 3

§ Texture resolution need not exceed screen resolution
§ texres = screenres * objsize/(2 * distance * tan(fov/2))

§ When can this go wrong?
§ Error > Threshold
§ Resolution
§ Point of view

§ Lifetime of Impostor – how to find it…

Resolution

§ ßscr = angle of pixel (fov/screenres)

§ ßtex = angle of texture (fov/texres)

§ When ßtex > ßscr , recompute

Point of View

§ Translation of viewer
§ ßtrans = angle between extreme points of bounding box

§ Movement towards the impostor
§ ßsize = angle of extreme points projection on impostor plane

ßtrans > ßscr or ßsize > ßscr , recompute

Cloud Impostors

Mark Harris (UNC Chapel Hill) - Real Time Cloud Rendering

DEMO

Lens Flare and Bloom - 1

§ Caused by lens of eye/camera when directed at light
§ Halo – refraction of light by lens
§ Ciliary Corona – Density fluctuations of lens
§ Bloom – Scattering in lens, glow around light

http://www.gamedev.net/reference/articles/article940.asp

Halo, Bloom, Ciliary Corona – top to bottom

Lens Flare and Bloom - 2

§ Use set of textures for glare effects
§ Each texture is bill boarded
§ Alpha map – how much to blend
§ Can be given colors for corona
§ Overlap all of them !
§ Animate – create sparkle

Example

§ Lasers/blasters

Greg Dunham, 2002

Particle Systems

§ Set of separate small objects set into motion using an
algorithm

§ Simulating Fire, smoke, explosions, water flows, trees,
galaxies …

§ Method of animation – not rendering
§ Representation – Points, lines …
§ Can be billboards too
§ DirectX – point sprite primitive
§ Example (Gamedev.net)

www.codesampler.com/source

Depth Sprite aka Nailboard

§ Give depth to image !
§ RGB? - ? is depth parameter
§ Depth deviation from the sprite to actual depth of the

geometry
§ Accuracy varies with number of bits used to represent ?

2 bits 4 bits 8 bits

http://zeus.gup.uni-linz.ac.at/~gs/research/nailbord/

Another Example

§ Another example for Depth Sprite (NVIDIA)

Hierarchical Image Caching

§ Impostors arranged in hierarchy
§ Partition scene into boxes – impostor per box
§ Parent impostor created from its children
§ Minimize dividing plane/object intersections
§ Balance the tree

§ Walkthrough without Imposters
§ Walkthrough with Imposters

http://zeus.gup.uni-linz.ac.at/~gs/research/icache/

Full Screen Billboarding

§ Foreground image – goggle view , flash effects etc…
§ Background image – environment

Skyboxes

§ Environment map of surroundings
§ Cube large enough to enclose all objects in the scene
§ Far away objects (star fields, sky) - static
§ Resolution – texel per screen pixel
§ One face covers 90 degrees FOV
§ Hide the seams ! (Overlap)
§ texres = screenres / tan(fov/2)
§ Example

Apron Tutorials - Morrowland

Image Processing

§ Render a scene as a texture/image
§ Map to a Quadrilateral (texel/pixel)
§ Use Pixel Shader to sample it more than once
§ Combine !
§ Example
§ Blur using a 3x3 grid
§ Nine texture coordinate pairs
§ Each offset by one texel as needed
§ Weigh and sum and output

Image Processing

§ Render a scene as a texture/image
§ Map to a Quadrilateral (texel/pixel)
§ Use Pixel Shader to sample it more than once
§ Combine !
§ Example
§ Blur using a 3x3 grid
§ Nine texture coordinate pairs
§ Each offset by one texel as needed
§ Weigh and sum and output

Quick Note: Advanced Image Processing with DirectX 9 Pixel Shaders
(ATI) – lists Prof. Mike Gennert

Volume Rendering

§ Rendering Voxels (CT/MRI)
§ Methods

§ Voxel Data is set of 2D image slices (Lacroute & Levoy)

§ Splatting – Voxel represented by alpha blended circular
object (splat) , that drops of in opacity at fringes

§ Volume slices as textured Quads (OpenGL Volumizer API)

References

§ Chapter 8, "Real-Time Rendering", Second Edition, 2002
http://www.realtimerendering.com

§ Sprite Example
http://wally.cs.iupui.edu/n341-client/gamelib20/examples/sprite_example.html

§ Chicken Crossing
http://www.glassner.com/andrew/media/chicken/chicken.htm

§ IBR Resources
http://www-2.cs.cmu.edu/%7Eph/869/www/misc.html

§ Real Time Cloud Rendering
http://www.markmark.net/clouds/

§ Beam Runner Hyper Game Screenshots
http://www.cs.unc.edu/~andrewz/twa/screenshots.html

§ Impostors Made Easy – William Damon, Intel
http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/tools/20219.htm

References

§ Text Book Excerpts
http://www.gamedev.net/reference/articles/article940.asp

§ Laser Beams
http://barney.gonzaga.edu/~gulax/dunham.html

§ Particle Systems
http://www.codesampler.com/source

§ Gamedev Particle Systems demo
http://www.gamedev.net/reference/programming/features/pointspritevb/

§ Depth Sprites
http://zeus.gup.uni-linz.ac.at/~gs/research/nailbord/

§ Hierarchical Image Caching
http://zeus.gup.uni-linz.ac.at/~gs/research/icache/

§ Skybox Demo
http://www.morrowland.com/apron/tut_gl.php

§ Image Processing – DirectX Pixel Shaders
http://www.ati.com/developer/shaderx/ShaderX2_AdvancedImageProcessing.pdf

Conclusion

Questions / Comments / Suggestions

