

CS 563 Advanced Topics in Computer Graphics *Texturing Part 1*

by Peter Lohrmann

What is Texturing?

- Texture is the look and feel of an object
- Mapping of a function or 2D image to a 3D object
- In Graphics
 - Complex coloring to surfaces
 - Surface imperfections
 - Lighting details

Outline

- General information on texture application
- Complex objects and textures
- Common problems ...
- ... and their solutions
- Addressing speed issues
- Animated textures

Texture Projections

- Spherical
- Cylindrical
- Planar
- Natural

(images by: Microsoft)

Wrapping Modes

- Wrap / Repeat / Tile
- Mirror
- Clamp / Clamp to edge
- Border / Clamp to border

Complex Objects

- Break apart into "simple" shapes
 - Each shape gets its own texture
 - Looks right as a whole

(Images by: Tito Pagan)

Examples

(image: www.isner.com)

3D Textures

- Also called "procedural textures"
- Function or algorithm determines surface color
- Realistic, continuous surfaces
 - Wood
 - Marble

(Image from: Ohio State)

Common Problems

- Magnification
 - Texture is smaller than surface
 - Aliasing
- Minification
 - Texture is larger than surface
 - Quality loss
- <u>http://www.ds.arch.tue.nl/General/Staff/jora</u> <u>n/wup/Default.menu?menu=6</u>
- <u>http://www.vrvis.at/vis/research/hq-hw-mipmap/</u>

Magnification

- More pixels than texels assign colors to
 - Aliasing problems
 - Intermediate pixels have to be calculated

Minification

- More texels than pixels that need color
 - Could be big loss of texture quality
 - Sampling of texels determines pixel color

Common Solutions

- Mipmapping
- Ripmapping
- Summed-Area Table
- Unconstrained Anisotropic Filtering

Mipmapping

- Solves minification (image from accad.osu.edu)
 - Generates subtextures
 - Averages 2x2 texel square into 1 texel
 - Recursively shrinks texture by 25% until it is 1 texel big
 - Uses about 133% of memory of original texture

Ripmapping

Similar to mipmapping

- Solves problem of viewing from near the surface
- Recursively halves each dimension of the texture
- Uses about 400% of memory of original texture
- Provides tall, wide, and proportional versions of the original texture

Summed-Area Table

Back-projection of pixel onto texture

- Averages texel values below pixel projection
 - Overblurring when viewed along the diagonal
- Uses about 300% of memory of original texture
- Not currently implemented in hardware

Unconstrained Anisotropic Filtering

- Utilizes the mipmapping hardware
- Samples from several layers of mipmaps
- Line of anisotropy
 - Parallel to longer side of the quad
 - Through middle of quad
 - Samples taken along this line

Comparison

Stars. I have seen them Fall, but when they drop and Die, no star is lost at II, from all the star-sown y. The toil of all that helps not the primal t; it rains into the nd still the sea is *Stars, I have seen them Fall, but when they drop and Die, no star is lost at II, from all the star-sown y. The toil of all that helps not the primal it rains into the nd still the sea is*

Texture Caching

- Far away textures have small mipmaps loaded
 - As object gets closer, bigger mipmaps are loaded
- Least recently used
 - Based on load time
 - May cause thrashing
- Most recently used
 - If texture was used in last frame, keep it around
 - Unload the most recently loaded texture
- Flight simulators
 - Several mipmaps loaded due to view

- Fixed-rate compression
 - Requires less texture memory and bandwidth
 - Allows higher quality at same performance cost
- DXTC (DirectX Texture Compression)
 - Stores 16 pixel values in 64 bits (vs. 256-385 bits)
 - 4:1 to 6:1 compression ratio
- Efficient and fast, but lossy

Multipass Texture Rendering

- Computing additional parts of lighting equation in several passes
 - Motion blur
 - Depth of field
 - Antialiasing
 - Soft shadows
 - Reflections
 - Etc

Multipass Texture Rendering Cont'd

- Quake III had a 10 pass design
 - Could be minimized to 2 for slower machines
 - 1-4: accumulate bump map
 - 5: diffuse lighting
 - 6: base texture
 - 7: specular lighting
 - 8: emissive lighting
 - 9: volumetric / atmospheric effects
 - 10: screen flashes

Multitexturing

- Allows multiple textures to be applied to one object
 - Textures are applied serially
 - Complex texture combinations that multipass can't do
- <u>http://www.delphigl.de/tutorials/multitex.htm</u>
- <u>http://www.nvnews.net/previews/geforce3/</u> <u>multitexturing.shtml</u>

Animated Textures

- Textures can also be video clips
 - They are computed for every frame anyways
 - Televisions
 - Windows
- Texture can also be moved along the surface
 - Water flowing
 - Clouds moving
- Blending
 - Making statues come to life

References

- Akenine-Moller, Tomas. <u>Real-Time Rendering</u>. Second Edition. 2002. AK Peters, Ltd.
- http://msdn.microsoft.com/archive/default.asp?url=/ archive/en-us/dnardir3d/html/msdn_wrapfun.asp
- http://www.cs.cornell.edu/courses/cs665/2004fa/Lec tures/Lec15_Hardware_web_6page.pdf
- <u>http://www.isner.com/tutorials/texture_primer.htm</u>
- <u>http://www.cse.ohio-state.edu/~yootai/cis782/lab-2/marble.html</u>
- http://accad.osu.edu/~midori/Materials/texture_map ping.htm