
CS 563 Advanced Topics in 
Computer Graphics

Shader Programming with Cg

by Michael Schmidt



Outline

§ History of Shaders
§ Current Languages
§ Introduction to Cg
§ A Smathering of Math
§ Example Program
§ Cg Setup
§ Textures
§ Fun with Light



History of Shaders

§ RenderMan - offline.
§ PixelFlow and RealTime Shading Language –

real-time.
§ Current languages are their descendants.
§ programmable GPUs = real-time shaders.
§ Shaders can be written in assembly, but 

there are huge benefits to using a high level 
language.
§ Four classes of operations: constant for a 

scene, constant for an object, vary per 
vertex, vary per pixel.



Current Languages

§ GLSL – GL Shading 
Language –
Connected to 
OpenGL.
§ HLSL – High Level 

Shading Language –
Microsoft language 
for use with Direct3D.
§ Cg – Nvidia language 

for use with OpenGL 
or Direct3D.



Vertex and Fragment 
Programs

From “The Cg Tutorial”, pg. 17



Cg Design

§ Cg is a shading language based on the 
syntax of C.
§ Cg exists to take advantage of the 

specialized design of GPUs.
§ Cg is used along with traditional general 

purpose languages.
§ Cg is robust and extensible.
§ The Cg runtime manages Cg programs.
§ Cg programs work with either OpenGL or 

Direct3D.
§ Multiple Cg programs per application.



Unique Cg Syntax

§ Cg supports new special “packed” types such 
as float4 and float4x4.
§ The GPU performs operations on packed 

types efficiently.
§ Prefer packed types over arrays.
§ Semantics tell the graphics hardware how an 

identifier should be used.
§ Functions can be entry functions or internal 

functions.
§ “Uniform” keyword specifies external origin.



More Uniqueness

§ “out” parameters are initially undefined, but 
they must be set before the function returns.
§ This is called “call-by-result” and it is 

different than “call-by-reference”.
§ “in” parameters are called by value.
§ “inout” parameters combine both ideas.



Math is Good

§ The operators * / - + all work on 
scalars and vectors.
§ Logical operators are supported 

and bitwise operators are 
reserved.
§ The half type offers precision 

between float and double.
§ The fixed data type has a range 

from -2 to almost 2, but is 
available only in fp30 and up.



Swizzling

§ Besides being fun to say, swizzling can be a 
powerful tool.
§ Swizzling rearranges vector components.
§ RGBA or XYZW values can be swizzled, but 

not mixed.
§ Swizzling examples:
§ float3 vec = scalar.xxx;
§ float4 vec1 = vec2.bgra;

§ Parts of vectors can be assigned new values.
§ Write Masking example:
§ vec3.xy = vec4;



Standard Library

§ Cg provides Standard Library routines that 
have been optimized to run quickly on a 
GPU.

reflecttex3Dprojpowfloor

powtex2Dmuldot

normalizersqrtmaxdeterminant

sincosroundlog2cross

smoothstepsinreflectlerpcos

refracttexCUBEradiansisnanabs



Flow Control

§ If, else, for, while, and do while are all 
implemented in Cg.
§ Some profiles support loops only if they can 

determine the number of iterations.
§ Dynamic loops are available on NVidia’s

fourth generation hardware (NV30 and up).
§ Maximum vertex program size is 65,536 and 

maximum fragment program size is 1,024 
instructions.



Cg Keywords

TRUEsamplerhalfcolumn_major

throwrow_majorgotoclass

thisreturngetchar

textureRECTreinterpret_castfriendcatch

textureCUBEregisterforcase

texture3Dpublicfloat*break

texture2Dprotectedfixedbool

texture1DprivateFALSEauto

texture*pixelshader*externasm_fragment

templatepixelfragment*explicitasm*



Cg Keywords

vertexfragment*staticnamespacedouble

vector*sizeofmutabledo

usingsignedmatrixdiscard*

unsignedshortlongdelete

unionsharedinterfacedefault

uniformsamplerCUBEintdecl*

typenamesampler3Dinoutcontinue

typeidsampler2Dinlineconst_cast

typedefsampler1Dinconst

trysampler_stateifcompile



Cg Keywords

whiletechnique*pass*enum

volatileswitchpackedemit

voidstructoutelse

virtualstring*operatordynamic_cast

vertexshader*static_castnewdword*

From “The Cg Tutorial” Appendix D



Sample Program

§ Let’s discuss the sample program.



What we need…

§ Compiler with a good IDE.
§ The Cg Compiler, RunTime, and supporting 

libraries.
§ Latest drivers for your GPU.
§ Typing “cgc –help” at the command prompt 

will display a list of available profiles in the 
compiler.
§ glGetString(GL_EXTENSIONS) will return 

extensions supported by the hardware.



CGC Profiles

§ Supported Profiles



Extensions

§ Extensions



Compiling a Shader

§ Shaders can be compiled statically or 
dynamically.
§ Static compilation may save time at 

initialization.
§ Dynamic compilation allows better profiles 

and future optimizations.
§ A good practice is to statically compile a 

shader to remove errors; then, dynamically 
compile with application.



Configuring .NET

§ This quick fix will work for now.



Textures

§ Vertex Programs use TEXCOORD semantics 
to output one or more texture coordinate 
sets.
§ Fragment Programs then use the texture 

coordinates.
§ Cg provides “sampler” types.
§ The tex*() function allows samplers and 

texture coordinates to be used to access 
textures. E.g. tex2D(decal, texCoord);



Let There be Light

§ The standard fixed function pipeline 
implements per vertex light. 
§ A fragment program can implement per pixel 

lighting.
§ Spotlights, distance attenuation, and 

directional lights are other possible effects. 



Another Vertex Program

From “Cg in 2 Pages” 
(page 1 in case you can’t find it.)



A Fragment Program

From “Cg in 2 Pages” 
(page 1 in case you can’t find it.)



More Advanced Topics

§ Animation
§ Particle Systems
§ Environment Mapping
§ Bump Mapping
§ Fog
§ Projective Textures
§ Shadows
§ General Purpose Computation



Cg Demos

§ In case I still have a lot of time left, here’s a 
cool video!



Other Tools

§ http://developer.nvidia.com/object/fx_compo
ser_home.html
§ http://developer.nvidia.com/object/nv_textur

e_tools.html
§ http://developer.nvidia.com/object/nvperfhu

d_home.html
§ http://developer.nvidia.com/object/nvshader

perf_home.html
§ http://developer.nvidia.com/object/melody_h

ome.html



References

§ T. Akenine-Möller, E. Haines, “Real-Time 
Rendering, 2nd ed., A K Peters, 2002 
§ R. Fernando, M. Kilgard, “The CG Tutorial”, 

Addison-Wesley Professional, 2003
§ http://developer.nvidia.com/
§ M. Kilgard, “Cg in Two Pages”, 2003


