

CS 563 Advanced Topics in Computer Graphics Shader Programming with Cg

by Michael Schmidt

Outline

- History of Shaders
- Current Languages
- Introduction to Cg
- A Smathering of Math
- Example Program
- Cg Setup
- Textures
- Fun with Light

History of Shaders

- RenderMan offline.
- PixelFlow and RealTime Shading Language real-time.
- Current languages are their descendants.
- programmable GPUs = real-time shaders.
- Shaders can be written in assembly, but there are huge benefits to using a high level language.
- Four classes of operations: constant for a scene, constant for an object, vary per vertex, vary per pixel.

Current Languages

- GLSL GL Shading Language – Connected to OpenGL.
- HLSL High Level Shading Language – Microsoft language for use with Direct3D.
- Cg Nvidia language for use with OpenGL or Direct3D.

Vertex and Fragment Programs

From "The Cg Tutorial", pg. 17

Cg Design

- Cg is a shading language based on the syntax of C.
- Cg exists to take advantage of the specialized design of GPUs.
- Cg is used along with traditional general purpose languages.
- Cg is robust and extensible.
- The Cg runtime manages Cg programs.
- Cg programs work with either OpenGL or Direct3D.
- Multiple Cg programs per application.

Unique Cg Syntax

- Cg supports new special "packed" types such as float4 and float4x4.
- The GPU performs operations on packed types efficiently.
- Prefer packed types over arrays.
- Semantics tell the graphics hardware how an identifier should be used.
- Functions can be entry functions or internal functions.
- "Uniform" keyword specifies external origin.

More Uniqueness

- "out" parameters are initially undefined, but they must be set before the function returns.
- This is called "call-by-result" and it is different than "call-by-reference".
- "in" parameters are called by value.
- "inout" parameters combine both ideas.

Math is Good

- The operators * / + all work on scalars and vectors.
- Logical operators are supported and bitwise operators are reserved.
- The half type offers precision between float and double.
- The fixed data type has a range from -2 to almost 2, but is available only in fp30 and up.

Swizzling

- Besides being fun to say, swizzling can be a powerful tool.
- Swizzling rearranges vector components.
- RGBA or XYZW values can be swizzled, but not mixed.
- Swizzling examples:
 - float3 vec = scalar.xxx;
 - float4 vec1 = vec2.bgra;
- Parts of vectors can be assigned new values.
- Write Masking example:
 - vec3.xy = vec4;

Standard Library

 Cg provides Standard Library routines that have been optimized to run quickly on a GPU.

abs	isnan	radians	texCUBE	refract
COS	lerp	reflect	sin	smoothstep
cross	log2	round	sincos	
determinant	max	rsqrt	normalize	
dot	mul	tex2D	pow	
floor	pow	tex3Dproj	reflect	

Flow Control

- If, else, for, while, and do while are all implemented in Cg.
- Some profiles support loops only if they can determine the number of iterations.
- Dynamic loops are available on NVidia's fourth generation hardware (NV30 and up).
- Maximum vertex program size is 65,536 and maximum fragment program size is 1,024 instructions.

Cg Keywords

asm*	explicit	pixelfragment*	template
asm_fragment	extern	pixelshader*	texture*
auto	FALSE	private	texture1D
bool	fixed	protected	texture2D
break	float*	public	texture3D
case	for	register	textureCUBE
catch	friend	reinterpret_cast	textureRECT
char	get	return	this
class	goto	row_major	throw
column_major	half	sampler	TRUE

Cg Keywords

compile	if	sampler_state	try
const	in	sampler1D	typedef
const_cast	inline	sampler2D	typeid
continue	inout	sampler3D	typename
decl*	int	samplerCUBE	uniform
default	interface	shared	union
delete	long	short	unsigned
discard*	matrix	signed	using
do	mutable	sizeof	vector*
double	namespace	static	vertexfragment*

Cg Keywords

dword*	new	static_cast	vertexshader*
dynamic_cast	operator	string*	virtual
else	out	struct	void
emit	packed	switch	volatile
enum	pass*	technique*	while

From "The Cg Tutorial" Appendix D

Sample Program

• Let's discuss the sample program.

- Compiler with a good IDE.
- The Cg Compiler, RunTime, and supporting libraries.
- Latest drivers for your GPU.
- Typing "cgc –help" at the command prompt will display a list of available profiles in the compiler.
- glGetString(GL_EXTENSIONS) will return extensions supported by the hardware.

CGC Profiles

Supported Profiles

C:\WINNT\system32\cmd.exe

C:\WINNT\system32\cmd.exe	. 🗆	<
<pre>supported profiles and their supported profileopts: fp40 profileopts: NumTemps={val> NumInstructionSlots={val> NumMathInstructionSlots={val> ClampFixed={val> MaxLoopCount={val> MaxLoopCount={val> MaxLoopCount={val> MaxLoopCount={val> NumTemps={val> NumTemps={val> NumTemps={val> NumTemps={val> NumTexInstructionSlots={val> NumTexInstructionSlots={val> NumMathInstructionSlots={val> NumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumTemps={val> MumInstructions={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoTexInstructionLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MoDependentReadLimit={val> MumTexTextextextextextextextextextextextextexte</pre>		
	100	-

Extensions

Extensions

Select "c:\Documents and Settings\Heather Schmidt\My Documents\Visual Studio Projects\S 🗆 🗙
GL_ARB_depth_texture GL_ARB_fragment_program GL_ARB_fragment_program_shadow GL_A RB_fragment_shader GL_ARB_imaging GL_ARB_multisample GL_ARB_multitexture GL_ARB_ occlusion_query GL_ARB_point_parameters GL_ARB_point_sprite GL_ARB_shadow GL_ARB shader_objects GL_ARB_bading_language_100 GL_ARB_texture_border_clamp GL_ARB_texture env_combine GL_ARB_texture_cube_map GL_ARB_texture_env_add GL_ARB_texture env_combine GL_ARB_texture_env_dot3 GL_ARB_texture_mirrored_repeat GL_ARB_texture reprectangle GL_ARB_transpose_matrix GL_ARB_vertex_buffer_object GL_ARB_vertex_p rogram GL_ARB_vertex_shader GL_ARB_window_pos GL_S3_s3tc GL_EXT_texture_env_add GL_EXT_abgr GL_EXT_bgra GL_EXT_blend_color GL_EXT_blend_func_separate GL_EXT_blend_ drminmax GL_EXT_blend_subtract GL_EXT_compiled_vertex_array GL_EXT_Cg_shader GL EXT_depth_bounds_test GL_EXT_draw_range_elements GL_EXT_secondary_color GL_EXT_multi_ draw_arrays GL_EXT_packed_pixels GL_EXT_rescale_normal GL_EXT_secondary_color GL_EXT_ stencil_two_side GL_EXT_stencil_wrap GL_EXT_texture3D GL_EXT_texture_env_comb ine GL_EXT_texture_cube_map GL_EXT_texture_filter_anisotropic GL_EXT_texture_compressio n_s3tc GL_EXT_texture_GL_EXT_texture_filter_anisotropic GL_EXT_texture_compressio on_test GL_IBM_square GL_NU_copy_depth_to_color GL_EXT_texture_lang GL_NU_fragment_program option GL_NU_half_float GL_NU_light_max_exponent GL_NU_multisample_filter_hint GL_NU_blend_square GL_NU_packed_depth_tsencil GL_NU_multisample_filter_hint GL_NU_texture_expand_normal GL_NU_vertex_array.gGL_NU_register_combi iners2 GL_NU_texture_expand_normal GL_NU_vertex_array.prage GL_NU_vertex_program option GL_NU_blend_square GL_NU_texture_shader3 GL_NU_vertex_array.prage GL_NU_vertex_program on_test GL_INU_texture_expand_normal GL_NU_vertex_array.prage GL_NU_vertex_program option GL_NU_blend_register_combines GL_NU_vertex_program on_test GL_NU_vertex_program GL_NU_vertex_program fL_NU_vertex_program of the SGL_NU_vertex_program GL_NU_vertex_program fL_NU_vertex_program of texture_shader2 GL_NU_vertex_program fL_N
_control

Compiling a Shader

- Shaders can be compiled statically or dynamically.
- Static compilation may save time at initialization.
- Dynamic compilation allows better profiles and future optimizations.
- A good practice is to statically compile a shader to remove errors; then, dynamically compile with application.

Configuring.NET

• This quick fix will work for now.

Configuration: Active(Debug)	▼ Platform: #	Active(Win32)	•	Configuration Manager
Configuration Properties	Command Line	"\$	(CG_BIN_PATH)\c	:gc" "\$(InputPath)" -o "\$(Input
General	Description	Pe	rforming Custom	Build Step
🚖 Custom Build Step	Outputs	"\$	(InputName).vp"	
ommand Line				
\$(CG_BIN_PATH)\cgc" "\$(InputPa	ath)" -o "\$(InputName).vp" ·	-profile vp20 -en	try blueTriangle	~
				~
				~
			Macr	os>>
			Macr	os>>

Textures

- Vertex Programs use TEXCOORD semantics to output one or more texture coordinate sets.
- Fragment Programs then use the texture coordinates.
- Cg provides "sampler" types.
- The tex*() function allows samplers and texture coordinates to be used to access textures. E.g. tex2D(decal, texCoord);

Let There be Light

- The standard fixed function pipeline implements per vertex light.
- A fragment program can implement per pixel lighting.
- Spotlights, distance attenuation, and directional lights are other possible effects.

Another Vertex Program

```
void simpleTransform(float4 objectPosition : POSITION,
                  float4 color
                                       : COLOR,
                  float4 decalCoord : TEXCOORDO,
                  float4 lightMapCoord : TEXCOORD1,
              out float4 clipPosition : POSITION,
              out float4 oColor
                                   : COLOR,
              cut float4 oDecalCoord : TEXCOORDO,
              out float4 oLightMapCoord : TEXCOORD1,
          uniform float brightness,
          uniform float4x4 modelViewProjection)
clipPosition = mul(modelViewProjection, objectPosition);
oColor = brightness * color;
oDecalCoord = decalCoord;
oLightMapCoord = lightMapCoord;
   From "Cg in 2 Pages"
```

(page 1 in case you can't find it.)

A Fragment Program

From "Cg in 2 Pages" (page 1 in case you can't find it.)

More Advanced Topics

- Animation
- Particle Systems
- Environment Mapping
- Bump Mapping
- Fog
- Projective Textures
- Shadows
- General Purpose Computation

Cg Demos

In case I still have a lot of time left, here's a cool video!

Other Tools

- <u>http://developer.nvidia.com/object/fx_compo</u> <u>ser_home.html</u>
- <u>http://developer.nvidia.com/object/nv_textur</u> <u>e_tools.html</u>
- <u>http://developer.nvidia.com/object/nvperfhu</u>
 <u>d_home.html</u>
- <u>http://developer.nvidia.com/object/nvshader</u> <u>perf_home.html</u>
- <u>http://developer.nvidia.com/object/melody_h</u> <u>ome.html</u>

References

- T. Akenine-Möller, E. Haines, "Real-Time Rendering, 2nd ed., A K Peters, 2002
- R. Fernando, M. Kilgard, "The CG Tutorial", Addison-Wesley Professional, 2003
- <u>http://developer.nvidia.com/</u>
- M. Kilgard, "Cg in Two Pages", 2003