CS 563 Advanced Topics In
Computer Graphics
Pipeline Optimization

by Mike Schmidt

The Assembly Line
Pipelines Defined
Pipeline Problems

The Graphics Pipeline
Finding Bottlenecks
Bottleneck Stages
Optimization Technigues
Performance Tools

2

v

The first Ford car plant used
runners to transport parts from
machines to assemblers.

Then, a conveyor belt was
used to transport parts to the
assemblers.

Bottlenecks were discovered In
some areas such as the
engines and transmissions.

Another assembly line was set
up for the bottleneck areas.

= Finally, a continuous chain was installed to
deliver entire chaises to the assemblers.

* |In this way, assembly time was cut from 17
hours to 1.5 hours.

* |In a pipeline, multiple instructions are
overlapped in execution.

* The ideas and principles in Ford’'s assembly
line are the same.

* |nstead of executing one instruction at a
time, different stages of n instructions are
executed simultaneously.

» |f stages are perfect, then the performance
speedup Is equal to the number of stages.

Unfortunately, pipelines are not perfect.
Hazards introduce delay into the pipeline.

The three classes of hazards are structural,
data, and control.

Structural hazards occur when an instruction
stage conflicts with a previous instruction
stage.

Data hazards occur when the next instruction
needs a result from the previous instruction.

Control hazards occur when a branch is
executed.

Video Memory ’ On-Chip Cache Memﬁfj“w

Vertex Shading
(TaL)

— Geometry |

— Commands |

el etz Post-T&L Cache |
System Memory | i '

Triangle Setup

 Rasterization |

............ - ragment
Shading
and Raster

Operations

L. e

| ‘Frame Buffer E- I -
EH i |

From GPU Gems

' Vary Frame
. Run App Buffer Rr——
_)—’ Bandwidth Sy
No
Vary Texture ¢
Size/Filtering [~ . Varies?
No
Vary
. Resolution
Vary Vertex
™ Instructions

L Vary Vertex
Size/AGP Rate

FPS
Varies?

No

Frlnmlnt
\/—* s
AGP

 Transfer

J

From GPU Gems

il YR

The bottleneck is the slowest stage In the
pipeline.

The first step of optimization is finding the
bottleneck.

In a graphics program, the bottleneck can be
the application, geometry, rasterizer, or
communication stages.

A performance improvement in the
bottleneck will result in a speedup.

Performance improvement in the other areas
will not result in a speedup.

Advertised peak rates are usually impossible
to achieve.

Instead of measuring pixels/second or
vertices/second, measure frame rate.

Some drivers optimize performance at the
cost of quality.

Use a real scene and not a special-case,
fabricated scenario.

On Windows machines, the Task Manager
gives processor utilization.

If the utilization Is 100%, this stage may be
the bottleneck (unless there is a busy-walit).

A code profiler can give execution time
statistics.

Replacing GL calls with null calls will remove
graphics stages from the pipeline.

Replace API calls with lighter-weight API calls
(e.g. glColor3fv instead of glVertex3f)

= The first stage of the pipeline is retrieving
the vertex information from memory.

= The vertex information iIs either in frame
buffer memory or local memory.

= Changing the vertex format size will
determine whether this stage Is the
bottleneck.

The geometry stage is the most difficult to
test.

Lighting, texture coordinate generation and
fog could be disabled.

To test this stage, add or remove light
sources and monitor the performance.

Another approach involves determining if a
simple vertex program results in a
performance improvement.

* The raster operations
stage Is responsible for
reading and writing
depth, stencil, and color.

= One testing method is to
vary the bit depth of color
or depth buffers (e.g. go
from 32 bits to 16 bits).

* The speed of the memory
clock can also be
modified to test this
stage.

The fragment stage includes the time spent
running fragment programs.

This stage Is separate from the ROP stage.

Complex pixel shaders may make this stage
the bottleneck.

Decreasing the resolution of the viewport is
one method.

Another method is to use simpler fragment
programs.

Fetching textures from memory can also be a
bottleneck.

One method involves changing the mipmap
function to use less detailed mipmap levels.

This reduces the effective texture size.

Another method is modifying the memory
clock.

= Once the bottleneck stage
has been identified, it
must be optimized.

= Either use a better
algorithm or reduce image
quality.

= | ook for the bottlenecks
within the bottleneck.

= Multiply by 1/length instead of dividing by
length.

= Align structs on word boundaries.

= Use inline, const, and pass by reference.

* Predecrement instead of postdecrement.

» Take advantage of spatial locality of memory.
= Write your own memory manager.

= Avoid redundant computations.

= Use the most efficient algorithms for sorting,
etc.

Use the smallest sufficient format.
Compute some vertex attributes.

Use shorter indices.

Use spatial locality of memory references.
Vertex arrays are the fastest to access.

Triangle Strips are faster than unconnected
triangles.

= Eliminate superfluous light sources.

= Don’t light polygons unnecessarily.

= Consider using environment maps.

* Preprocess normals (don’'t normalize).

= Simplify vertex programs.

= Don't swap vertex programs needlessly.

= Don’t try to optimize a compiled vertex
orogram (unless you REALLY know what you
are doing).

= EXit out of a vertex program Iif possible.

Perform a depth rendering pass first.
Use textures for lookup tables.

Don't do anything in a pixel shader that can
0e done in a vertex shader.

Render In front-to-back order.
Use the smallest precision possible.

Reduce the size of textures.

Compress textures.

Use efficient formats.

Favor glTexSublmage to glTexImage.

Use multitexturing instead of multiple passes.
Use mipmaps.

Use cheaper filtering.

Reduce alpha blending.

Disable depth testing after first pass when
depth is known.

Don’t call glClear if the entire viewport will be
overwritten.

Render front to back.
Use smaller precision formats.

Know your architecture.

Reduce the number of primitives.

Turn off unused features.

Preprocess whenever possible.

Minimize API calls.

Make sure textures are Iin texture memory.
Don’t read from the frame buffer.

Use display lists.

Add advanced features to stages that are not
bottlenecks.

Add advanced physics to the application
stage.

Use more lights in the
geometry stage.

Use more expensive
texture filtering.

Add more triangles.

Vertex Shader Units

;ﬂ

1-

GeForce 6800 series 3D Pipeline
DEED @
I

v
Trianghe Selup
.

Pixel Pipelines

|
==

e T

i
1
i
{
f
I
|
|

Shader Instruction Dispateh
S A

v v v v v v

v

= ﬂ.
=
| |

Fragment Crosshar

=8=8
e

Fis

i

ROP Engine

From Tom’s Hardware

NVPerfHUD
VTune
FX Composer

PowerStrip (useful for modifying the GPU’s
clock)

NVPerfHUD works with DirectX 9.0
applications.

Statistics are provided on graphs similar to a
heart monitor while the application runs.

The collected statistics can be used to fix
bottlenecks.

Analysis must be enabled through the API.

NVPerfHUD Screenshot

% Direct3D (DX9) - Simple Vertex Shader Using CG E@ﬁ]
FFS: 0 TEI=s<Frame: 0 Time: 11.5 sHEEerfHUD 2.1 — HOT FOR BEHNCHMAREIHNG

Humber of DF ca

®m M= per framns Driver time CPU waits for GPUT = GPU idle = Vid:

Performance analysis is not enabled.

= VVTune is a robust code analysis tool from
Intel.

= Call graphs and execution time are provided.

» Allows developers to optimize the application
stage.

= Allows developers to create shaders.

» Shaders can be debugged.

Performance analysis and optimization hints
help eliminate bottlenecks.

st s | aoir Met b | Pemogiets | oo 1 ¢ x| oo

WS CAL] U | NIR A NI AoREELIZIA
Teamauzar | A

THLT41 4% CRACH [330NAKepL, X

cuirte caabiSantmed, BV, TeSaacddl " (NI LANTE_NCANALIAL

fapfal se canzhflariopr, .Taefoacddl © (VIS Z/WTS BORMALIZD || Tades
: el Mol s D O ittt
PP

e

4 JuAE drad mdaal ALEe3E a [aix o1
esonrd BA_adal {#3_CNTFNT M © SOl L
0 7Y 10, 000 -

Ehanrd 2l = B Biffss * vendbiFadeiTeedany, £laani {3 Teeiear Soutts Pt Dighress 1080

carura #a1; . S S —
: w1 17 OO T A AT
4 534 Tyow an Bap aE kadan] Rl LT LE T R T L DL AT

Lrept Bt b [T

£hanrd HA_Ghawkaan {43 _CHTFIT M| - 20LOR
tiancd ven = vendbiSlorimels fhaani i3,
PALAEE LAE:

Ed i, 1
il e 18, sy
i v
wd

[EY
i sles P il i e by of B0

Pyrmrr 2 Bl Prcors 200
e Pl Bir s B

e |t (o sk raed |

From NVidia

http://www.pbs.org/wqgbh/aso/databank/entries/dt1
3as.html

http.//www.aaca.org/history/assmbl_1.htm

T. Akenine-Moller, E. Haines, “Real-Time Rendering”,
2nd ed., A K Peters, 2002

R. Fernando, “GPU Gems”, Addison-Wesley, 2004

J. Hennessy, D. Patterson, “Computer Architecture”,
3'd ed., Morgan Kaufmann, 2003

http://www.tomshardware.com/
http://www.intel.com/software/products/vtune/vpa/
http://developer.nvidia.com/page/home.html

