
CS 563 Advanced Topics in
Computer Graphics

Pipeline Optimization

by Mike Schmidt

Outline

§ The Assembly Line
§ Pipelines Defined
§ Pipeline Problems
§ The Graphics Pipeline
§ Finding Bottlenecks
§ Bottleneck Stages
§ Optimization Techniques
§ Performance Tools

The Assembly Line

§ The first Ford car plant used
runners to transport parts from
machines to assemblers.
§ Then, a conveyor belt was

used to transport parts to the
assemblers.
§ Bottlenecks were discovered in

some areas such as the
engines and transmissions.
§ Another assembly line was set

up for the bottleneck areas.

Assembly Improvement

§ Finally, a continuous chain was installed to
deliver entire chaises to the assemblers.
§ In this way, assembly time was cut from 17

hours to 1.5 hours.

What is a Pipeline?

§ In a pipeline, multiple instructions are
overlapped in execution.
§ The ideas and principles in Ford’s assembly

line are the same.
§ Instead of executing one instruction at a

time, different stages of n instructions are
executed simultaneously.
§ If stages are perfect, then the performance

speedup is equal to the number of stages.

Pipelining Pitfalls

§ Unfortunately, pipelines are not perfect.
§ Hazards introduce delay into the pipeline.
§ The three classes of hazards are structural,

data, and control.
§ Structural hazards occur when an instruction

stage conflicts with a previous instruction
stage.
§ Data hazards occur when the next instruction

needs a result from the previous instruction.
§ Control hazards occur when a branch is

executed.

The Graphics Pipeline

From GPU Gems

Testing Methodology

From GPU Gems

Finding Bottlenecks

§ The bottleneck is the slowest stage in the
pipeline.
§ The first step of optimization is finding the

bottleneck.
§ In a graphics program, the bottleneck can be

the application, geometry, rasterizer, or
communication stages.
§ A performance improvement in the

bottleneck will result in a speedup.
§ Performance improvement in the other areas

will not result in a speedup.

Measuring Performance

§ Advertised peak rates are usually impossible
to achieve.
§ Instead of measuring pixels/second or

vertices/second, measure frame rate.
§ Some drivers optimize performance at the

cost of quality.
§ Use a real scene and not a special-case,

fabricated scenario.

Testing the Application Stage

§ On Windows machines, the Task Manager
gives processor utilization.
§ If the utilization is 100%, this stage may be

the bottleneck (unless there is a busy-wait).
§ A code profiler can give execution time

statistics.
§ Replacing GL calls with null calls will remove

graphics stages from the pipeline.
§ Replace API calls with lighter-weight API calls

(e.g. glColor3fv instead of glVertex3f)

Testing Vertex
Bandwidth

§ The first stage of the pipeline is retrieving
the vertex information from memory.
§ The vertex information is either in frame

buffer memory or local memory.
§ Changing the vertex format size will

determine whether this stage is the
bottleneck.

Testing the Geometry Stage

§ The geometry stage is the most difficult to
test.
§ Lighting, texture coordinate generation and

fog could be disabled.
§ To test this stage, add or remove light

sources and monitor the performance.
§ Another approach involves determining if a

simple vertex program results in a
performance improvement.

Testing the ROP Stage

§ The raster operations
stage is responsible for
reading and writing
depth, stencil, and color.
§ One testing method is to

vary the bit depth of color
or depth buffers (e.g. go
from 32 bits to 16 bits).
§ The speed of the memory

clock can also be
modified to test this
stage.

Testing the Fragment Stage

§ The fragment stage includes the time spent
running fragment programs.
§ This stage is separate from the ROP stage.
§ Complex pixel shaders may make this stage

the bottleneck.
§ Decreasing the resolution of the viewport is

one method.
§ Another method is to use simpler fragment

programs.

Testing Texture Bandwidth

§ Fetching textures from memory can also be a
bottleneck.
§ One method involves changing the mipmap

function to use less detailed mipmap levels.
§ This reduces the effective texture size.
§ Another method is modifying the memory

clock.

Optimizing Bottlenecks

§ Once the bottleneck stage
has been identified, it
must be optimized.
§ Either use a better

algorithm or reduce image
quality.
§ Look for the bottlenecks

within the bottleneck.

Application Optimization

§ Multiply by 1/length instead of dividing by
length.
§ Align structs on word boundaries.
§ Use inline, const, and pass by reference.
§ Predecrement instead of postdecrement.
§ Take advantage of spatial locality of memory.
§ Write your own memory manager.
§ Avoid redundant computations.
§ Use the most efficient algorithms for sorting,

etc.

Vertex Bandwidth
Optimization

§ Use the smallest sufficient format.
§ Compute some vertex attributes.
§ Use shorter indices.
§ Use spatial locality of memory references.
§ Vertex arrays are the fastest to access.
§ Triangle Strips are faster than unconnected

triangles.

Geometry Optimization

§ Eliminate superfluous light sources.
§ Don’t light polygons unnecessarily.
§ Consider using environment maps.
§ Preprocess normals (don’t normalize).
§ Simplify vertex programs.
§ Don’t swap vertex programs needlessly.
§ Don’t try to optimize a compiled vertex

program (unless you REALLY know what you
are doing).
§ Exit out of a vertex program if possible.

Fragment Optimization

§ Perform a depth rendering pass first.
§ Use textures for lookup tables.
§ Don’t do anything in a pixel shader that can

be done in a vertex shader.
§ Render in front-to-back order.
§ Use the smallest precision possible.

Texture Optimization

§ Reduce the size of textures.
§ Compress textures.
§ Use efficient formats.
§ Favor glTexSubImage to glTexImage.
§ Use multitexturing instead of multiple passes.
§ Use mipmaps.
§ Use cheaper filtering.

Frame-Buffer
Optimizations

§ Reduce alpha blending.
§ Disable depth testing after first pass when

depth is known.
§ Don’t call glClear if the entire viewport will be

overwritten.
§ Render front to back.
§ Use smaller precision formats.

General Optimizations

§ Know your architecture.
§ Reduce the number of primitives.
§ Turn off unused features.
§ Preprocess whenever possible.
§ Minimize API calls.
§ Make sure textures are in texture memory.
§ Don’t read from the frame buffer.
§ Use display lists.

Balancing Act

§ Add advanced features to stages that are not
bottlenecks.
§ Add advanced physics to the application

stage.
§ Use more lights in the

geometry stage.
§ Use more expensive

texture filtering.
§ Add more triangles.

Modern Hardware Example

From Tom’s Hardware

Optimization Tools

§ NVPerfHUD
§ VTune
§ FX Composer
§ PowerStrip (useful for modifying the GPU’s

clock)

NVPerfHUD

§ NVPerfHUD works with DirectX 9.0
applications.
§ Statistics are provided on graphs similar to a

heart monitor while the application runs.
§ The collected statistics can be used to fix

bottlenecks.
§ Analysis must be enabled through the API.

NVPerfHUD Screenshot

Performance analysis is not enabled.

VTune

§ VTune is a robust code analysis tool from
Intel.
§ Call graphs and execution time are provided.
§ Allows developers to optimize the application

stage.

FXComposer

§ Allows developers to create shaders.
§ Shaders can be debugged.
§ Performance analysis and optimization hints

help eliminate bottlenecks.

From NVidia

References

§ http://www.pbs.org/wgbh/aso/databank/entries/dt1
3as.html

§ http://www.aaca.org/history/assmbl_1.htm
§ T. Akenine-Möller, E. Haines, “Real-Time Rendering”,

2nd ed., A K Peters, 2002
§ R. Fernando, “GPU Gems”, Addison-Wesley, 2004
§ J. Hennessy, D. Patterson, “Computer Architecture”,

3rd ed., Morgan Kaufmann, 2003
§ http://www.tomshardware.com/
§ http://www.intel.com/software/products/vtune/vpa/
§ http://developer.nvidia.com/page/home.html

