
CS 563 Advanced Topics in
Computer Graphics

Intro to Vertex and Pixel Shaders

by Matthew Maziarz

Outline

§ History before Shaders
§ Pre-Hardware T/L
§ Hardware T/L

§ Vertex Shaders
§ Pixel Shaders

§ Extras

§ References

Before Shaders

§ Prior to 1999 all Transformation and Lighting
was done by the CPU

§ This caused the CPU to do almost all the
work

§ Could use assembly to make the card do
more of the work

Before Shaders countinued

§ 1999 cards introduced Hardware T/L
§ This moved the transformation and lighting to the

card which alleviated some work from the CPU
§ The problem was this was a fixed function

pipeline
§ Once you sent it to the card you had no control
§ Forced programmers to use basic Gouraud/Phong

for lighting because it was the only model
supported

Shader

§ "Shading is the assignment of colors - or
more specifically - outoging radiance, to
points on a surface“ [pg 5 Real Time Shading]

§ Vertex and Pixel shaders do much more,
including manipulation and movement of
vertices.

General Shader

§ Both Pixel and Vertex Shader can be used if
API supports even if card does not. It will
run on CPU (slow)

§ Both the fixed pipeline and programmable
can be used, just not in parrallel

§ Limited number of Instructions (keep getting
raised)

General continued

§ Must be compiled, usually at run-time
§ Nvidia
§ Vertex Shader -> Texture Shader -> Register Combiner
§ Texture Shader not really programmable, just choose some

options

§ Direct X
§ Vertex Shader -> Pixel Shader

§ Shader languages are inherently different
from most programming languages They are
based on a data flow computational model,
in other words, computation is dependant on
that data that comes in.

Direct 3D pipeline

http://www.gamedev.net
/columns/hardcore/dxs
hader1/page2.asp

Vertex Shader

§ 16 input registers.
§ 9 output registers for GeForce cards and 11

for Radeon cards.
§ 96 constant registers for GeForce cards and

192 for Radeon cards.
§ 12 temporary registers.
§ 1 address register (for vertex shader version

vs.2.0).

Vertex Shader continued

§ Reasons why
§ Procedural Geometry (cloth)
§ Particle Systems
§ Advanced Animation Interpolation
§ Lens Effects
§ Newer Lighting effects

§ Can Change
§ Position, Color, Size, Texture Coordinates

Vertex Shader Continued

Pg 18 The CG
Tutorial

Vertex Shader Continued

§ Does
§ Can load and unload different shaders to only run

some shaders on certain streams of vertices
§ If card supports multiple shaders they can run in

parallel on multiple processing units
§ Each vertex take same amount of time to pass

through shader

Vertex Shader Continued

§ Don’ts
§ Vertices cannot be created or destroyed
§ Can be moved off screen

§ Each vertex independent of others so vertices
cannot share information
§ This is what allows you to run in parallel if hardward

supports it

§ No loops or GoTo commands (yet)
§ Certain hardware are now trying to implement this

Pixel Shader

§ 8 constant registers.
§ 4 texture registers (6 in DirectX pixel shader

version ps.1.4).
§ 2 temporary registers (6 in DirectX pixel

shader version ps.1.4).
§ 2 color registers.

Pixel Shader Continued

§ Reasons Why
§ Single Pass per-pixel lighting (true phong)
§ Anisotropic Lighting
§ Cell/Toon/Non-Photorealistic rendering
§ Volumetric effects
§ Procedural textures
§ Horizon (self-shadowing bump) maps

§ Can Change
§ Perform math on texture coordinates
§ Use texture lookups to modify other textures

Pg 20
The CG Tutorial

Pixel Shader continued

§ Pg 221 Real Time Rendering

Pixel Shader Continued

§ Addressing Instructions
§ Used to look up values in a texture
§ Depending on instruction can treat the coordinate
§ As standard lookup
§ Vector
§ Part of matrix

§ You can also kill fragments
§ Addressing Instruction do not perform operation

but they set up the data in a specific form

Extras

§ Courtesy of Stupid OpenGL Shader Tricks
by Simon Green

Extras

Extras

Links

§ Here are some recommended links for
beginning with shaders
§ http://nehe.gamedev.net/data/lessons/lesso

n.asp?lesson=47
§ A simple pseudo water vertex shader, also

walksthrough the opengl code to load and run
shader

§ Shader Programming by Wolfgang Engel
http://www.gamedev.net/columns/hardcore/
dxshader1/
§ Beginner Direct X vertex and pixel shader paper

§ Best place would be NVidia’s CG Toolkit
§ A little more advanced but a ton of examples

References

§ Akenine-Moller, Tomas. “Real-Time Rendering”.
Second Edition. 2002. AK Peters, Ltd.

§ Fernando, Randima and Kilgard, Mark. “The CG
Tutorial”. 2003. Adddison-Wesley

§ Olano, M. Hart, J. Heidrich, W. and McCool, M.
"Real-Time Shading" A K Peters Publishers, 2002

§ http://nehe.gamedev.net/data/lessons/lesson.asp?le
sson=47

§ Shader Programming by Wolfgang Engel
http://www.gamedev.net/columns/hardcore/dxshade
r1/

§ http://www.ultimategameprogramming.com/articles/
VertexPixelShaderIntro3.php

§ http://www.devmaster.net/articles/shaders/

