CS 563 Advanced Topics In
Computer Graphics
Real Time Rendering (Part 1)

Kutty S Banerjee

Broad Classification:
= Geometry Based Rendering
= I[mage Based Rendering

Have a set of methods lying in between.
= We Start from GBR and gradually move towards
IBR incorporating techniques from IBR

Scene described using geometric objects
= How? Using CAD tools, solid modellers..

Geometry sampled and discretized

Stored internally as triangles..(tessellation),
guads
= Contain light, normal coordinates

With information ---- simulate the
world...why?

Light equations, Gouraud, Phong, Phong
Blinn physics that recreates world lighting
using equations

Complexity proportional to scene complexity

= Consider Image Based Techniques
= Textures

* Environment Mapping
= Bump Mapping
* Image Warping
» Point Based Rendering & Image Based
Rendering in second half of talk!!

= Movin? from Pure Geometric
Modelling towards IBR

= |nstead of modelling and
rendering, use textures for
color, roughness, reflection,
shadows!!

= Vast Topic... cover ideas
mostly!!

Cover

» Texture Mapping

» Texture Filtering

= Textures in OpenGL

* Environment Mapping

* Bump Mapping

Not Cover

» Rendering of Textures

= [Interpolation Techniques

http://www.kenmusgrave.com/pleiades2.jpg

Textures ->1D, 2D, do not cover 3D
2D Texture, bitmap , each point texel
Texture Mapping=

Journey from Texel(s) to Pixel(s)
Screen Scanning:

For every pixel locate a texel. Most
Common!!

Texture Scanning:
For every texel locate a pixel.

= Ttw and Tws are the
transforms

= Their inverse
transforms can be used
as well!l

?} W

[1]

Affine Linear Mapping
We deal with following Mapping Cases:
1. 2D texture to polygon surface (2D)

2. 2D texture to curved surfaces using
meshes.
= Cylinder
= Cylinder like
= Sphere
= Sphere like

= Affine mapping setup
(#vertices same)

= Affine -> Equal ranges
In texel space and pixel
space

» Linear Transformations

= Translation, rotation,
scaling allowed

[1]

*= Cylinder modelled using
mesh (quad faces) r

= Patching advantage - |
> can use surface
parameters come for
free

B (9 - 9&)/(9b — Qa-}

t = (2 — 2a)/(2b — 2a)

[1]

A

-

Vo Vs

= How about a chess pawn?

_ o
~—— __——__/—/
L
P,
\\\ normal to
cylinder
oo o
b
imaginary
cylinder carrying \\——-——-—'{:ﬂ enclosing
the texture cylinder

[1]

= Sampling high-frequency signal at low-frequency
= Solution? Sample faster!!
= Screen resolution finite!! Can you increase it?

a) b)

a)

AN N

Pre Filtering
* Look inside a pixel.
= Search for pixel coverage.

White : 1 Blicdicsh
0 NGl

i X
//_(\ olololol1lelo0]o0
- \ \ ololo|e|13]15/8]0

aN

Increase Sampling

Rate.
: Center of
So 1 pixel really made display pixel
N~ ample
up of “n’ fragments. l 20
Consider the color of | . [~ ~ 1 ~ 77
X X M X X X
these fragments ¥ o
Mere Average or FX X XK XX X B
Weighted Sum!! ==
XX X X X X
* K f;gfw/\f/ =
ﬂ«’i”) il Al
K—% AKX

[1]

ahaa back to textures again......!!

Screen Pixels not points, have area. Live with
it.....

A pixel point maps to texel.
But a pixel area maps to what?.....
A “set of texels” of course....

Root cause of aliasing problem in
textures

[1]

=T{x, ¥)

(%, 1%)

44444

The central idea behind Filtering
= Map a pixel to “set of texels”

How do we do it?
Elliptical Weighted Average [Heckbert]
Stochastic Sampling

Every pixel associated with a symmetric filter function
Generates a circle around the pixel
Maybe different for each pixel.
Therefore LUT

Circle mapped to texel space -> ellipse

All texels inside ellipse “average” or “weighted sum”

AL

P o e
AT ok
/.04 |
{7V I 7]

T

I
R g P

TR TA/L/

T

filter function
centered at
a pixel

» Locate texel for the pixel
= Sample surrouding texels using a random function.

[A

T [1]

/ FEWI"J;.
11— Bl Tt
texel
Texture Polygon Texture Palygon
Magnification Minification

» glTexParameteri(GL_TEXTURE 2D,
GL_TEXTURE_MAG_FILTER, GL_NEAREST);

= glTexParameteri(GL _TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST);

[6]

So far...only color lifted from textures
How about reflections?
One option -> raytracing? Rays bouncing and killing each

Textures Make it simpler.....eg., Environment mapping!!

Ray strikes surface.

From surface find reflection vector

Map reflection vector to texels . How? Different algos...

Use reflection vector r=e-2(n.e)n [Blinn, Newell] e= eye
vector, n=normal

Map ‘r' to sphere using
» P=arccos(-rz)
= O=atan2(ry,rx)
Convert P,0 to texels (u,v) by normalizing
Texture covers sphere surrounding the reflection point
Disadvantage: Need per pixel normal, lighting info.

Instead of color from
texture, use normal
stored In texture

In lighting equation,
add this normal with
existing normal

Modelling creases,
wrinkles complex,

texturing much faster

www.paulsprojects.net

» Frames have objects in
common.

= Rendering common objects
from scratch wasteful!

= Store common objects between
frames!! How?

Impostor : Texture image of 3D
object on planar transparent

polygon
Static : Impostors created offline

* Too much memory

Dynamic: Impostors created Iin
real-time

= Processing Rate
higher!

= Lower Memory
Consumption!

http://www.gris.uni-tuebingen.de/projects/ilo/repository.html

How are they
Created?

3D objects surrounded
by Bounding Box

Journey from
FrameBuffer to
TextureBuffer!! ©

Projn of BBox

Wrap Smallest
Rectange around it.
2D Image “view-
dependent”

Congratulations!! You just created an Impostor!!

= Normally what would

We thlnk? screen resolution maximunim rexnire resolution
" Further ObjeCtS Ir_ |] 1 1 1 JII‘ | 1 | 1 | _: :-l I | :. | . l‘:
Impostors rite? \ / \ i ?
. y (screen / \ *
= When view angle of ¥ & N
texel < 4 H‘a If
. . N ”>{\f0v v/
view angle of pixel
W Vv
Use Impostor!!
ULEEX < (IECFEE"

= What if object moves?
= What if eye rotates?

= What if eye moves
towards object?

= What if object moves
towards eye?

Object Moves? -> Nopes
shouldn’t. Seriously,
limitation of this work.

Eye rotates, translates
within minimum range,
2D affine transformation of
Impostor solves problem.

[2]

= Depth Testing?

= Depth Stored per-impostor.
All texels have same depth!!

» |Intersecting objects cause
problem!!

chair over table:
mcorrect visibility

[5]
correct image

table over &hair:
incorrect visibility

R S
incorrect .

visibility

correct
images

Nov 95. Hmmmm.... Quite old!!
Impostors reduce photorealistic quality of
Image

Is video rate available without Impostors
modern day h/w?

Complexity of scene decides.

Not very clear....

Depth of Impostors’ polygon= MaxDepth of
any pixel in object’s image rite?

Multiple polygonal planes
Therefore, multiple depth
values

Can reasonably solve object
intersection..nmmmmm
= Maybe with higher
#planes, gets better

With Translation, different
layers become distinct!!

original
geometry

[#
i ot
)
0
i
f e
lra
§
eye
'
|
1R
I
]
T
-
lld_-'
s
eve

1 lavered

Hnpostor
erght layers

nupostor

”
__ one layer

1y
| .'-. =
1 7
¥ i .'.
| f

3, Y -

I
1 e
- -7 layered

1] -

p;é

eve

P | o

Hnpostor
32 layers

[5]

Addition onto Impostors

Stores depth value of each texel

While copying FB-> TB peeks at

Depth Buffer too!!

Since each FB element has corresponding
Depth INFO!!

Texel == (R,G,B,2)

Accurate for Object Intersections
Drawback: Memory Consumption High!!

% I 2n r+i | :
d =Y = Y| [y v
¥ .T" W
(4 2n tth i
¥ = | ¥ 55 =3 O L ana xt= ¥
E ; n !
: 0 0 _[f —-n] —2fn| |z v
“_f_ f-nlf-n 1 i
(0o 0 -1 0| B,

nailboard
polygon

perspective
transformation

[4]

nailboard
polygon

nailboard

o i
olygon e Lh\ 8
. L¢”]
o . B ! g
) :

el [2
£ -2 ' ?

SR - A _

" perspective
transformation

screemn space

Requirements from h/w?

Multiple Image Layers

2D simulation of 3D Transforms
Real fast texture memory b/w
Sizeable texture memory

Geometric , Image error calc in h/w

System HW Partitioning

Talisman VLS| Components

M || 28 Standard Components
RDRAM | | RDRAM

Commodity DRAM Memory

p—

IR
/

PCIBus Polygon
) MediaDSP || Object

Processor

[2]

DAC |€ >

USB
H

Compdsiting
Buffer

XV vy

'g Ch Audin.
Audio

Chip : Modem :

No FrameBuffer

Image Layers with
multiple chunks.

Images rendered on
Image Layer
Independently!!

So object per Image
Layer

[3]

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

Image Layer can 2D
transform

2D transform to
simulate 3D affine
transforms

Less Expensive
View point rotates

View point translates
(small margin)

[2]

» Objects sorted (in s/w by programmer) into
chunks
= How? Object level partitioning (voxels)
= Mapping voxels to chunks
» Qverlapping voxels copied to chunks

» 32*32 => One chunk at a time rendered!!
= Therefore, Z-Buffer how big?
= Texture memory how big?

= Can they both reside on board? Blazing
Speed!!
» Objects (Image Layer) prioritizing in S/W

1. Computer Graphics using OpenGL- FS Hill

2. Talisman: Commodity Realtime 3D Graphics
for PC — Jay Torborg, James T.Kajiya

3. Dynamically Generated Imposters — Gernot
Schaufler

4. Per-Object Image Warping With Layered
Impostors — Gernot Schaufler

5. Nailboards: A Rendering Primitive for Image
Caching in Dynamic Scenes — Gernot
Schaufler

6. OpenGL Programming Guide — Addison
Wesley

