
CS 563 Advanced Topics in
Computer Graphics

Real Time Rendering (Part 1)

Kutty S Banerjee

Real Time Rendering

Broad Classification:
§ Geometry Based Rendering
§ Image Based Rendering

Have a set of methods lying in between.
§ We Start from GBR and gradually move towards
IBR incorporating techniques from IBR

GBR

§ Scene described using geometric objects
§ How? Using CAD tools, solid modellers..

§ Geometry sampled and discretized
§ Stored internally as triangles..(tessellation),

quads
§ Contain light, normal coordinates

§ With information ---- simulate the
world…why?
§ Light equations, Gouraud, Phong, Phong

Blinn physics that recreates world lighting
using equations
§ Complexity proportional to scene complexity

GBR moves towards IBR

§ Consider Image Based Techniques
§ Textures
§ Environment Mapping
§ Bump Mapping
§ Image Warping

§ Point Based Rendering & Image Based
Rendering in second half of talk!!

Textures

§ Moving from Pure Geometric
Modelling towards IBR

§ Instead of modelling and
rendering, use textures for
color, roughness, reflection,
shadows!!

§ Vast Topic… cover ideas
mostly!!

Cover
§ Texture Mapping
§ Texture Filtering
§ Textures in OpenGL
§ Environment Mapping
§ Bump Mapping
Not Cover
§ Rendering of Textures
§ Interpolation Techniques

http://www.kenmusgrave.com/pleiades2.jpg

Texture Mapping

§ Textures ->1D, 2D, do not cover 3D
§ 2D Texture, bitmap , each point texel
§ Texture Mapping=

Journey from Texel(s) to Pixel(s)
§ Screen Scanning:

For every pixel locate a texel. Most
Common!!
§ Texture Scanning:

For every texel locate a pixel.

Mapping

§ Ttw and Tws are the
transforms

§ Their inverse
transforms can be used
as well!!

[1]

Mapping Cases

Affine Linear Mapping
We deal with following Mapping Cases:
1. 2D texture to polygon surface (2D)
2. 2D texture to curved surfaces using

meshes.
§ Cylinder
§ Cylinder like
§ Sphere
§ Sphere like

To Planar Surface

§ Affine mapping setup
(#vertices same)

§ Affine -> Equal ranges
in texel space and pixel
space

§ Linear Transformations
§ Translation, rotation,

scaling allowed

[1]

Curved Surface - Cylinder

§ Cylinder modelled using
mesh (quad faces)

§ Patching advantage -
> can use surface
parameters come for
free

[1]

Cylinder Like

§ How about a chess pawn?

[1]

Texture Filter

Aliasing-Concept

§ Sampling high-frequency signal at low-frequency
§ Solution? Sample faster!!
§ Screen resolution finite!! Can you increase it?

[1]

Anti Aliasing

Pre Filtering
§ Look inside a pixel.
§ Search for pixel coverage.

[1]

High Sampling

§ Increase Sampling
Rate.

§ So 1 pixel really made
up of `n’ fragments.

§ Consider the color of
these fragments

§ Mere Average or
Weighted Sum!!

[1]

Anti Aliasing in Textures

§ ahaa back to textures again……!!
§ Screen Pixels not points, have area. Live with

it…..
§ A pixel point maps to texel.
§ But a pixel area maps to what?.....
§ A “set of texels” of course….
§ Root cause of aliasing problem in

textures

Anti Aliasing Textures

[1]

Filtering Problem

§ The central idea behind Filtering
§ Map a pixel to “set of texels”

§ How do we do it?
§ Elliptical Weighted Average [Heckbert]
§ Stochastic Sampling

Elliptical Weighted Average

§ Every pixel associated with a symmetric filter function
§ Generates a circle around the pixel
§ Maybe different for each pixel.
§ Therefore LUT
§ Circle mapped to texel space -> ellipse
§ All texels inside ellipse “average” or “weighted sum”

[1]

Stochastic Sampling

§ Locate texel for the pixel
§ Sample surrouding texels using a random function.

[1]

Filtering In OpenGL

§ glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_NEAREST);

§ glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST);

[6]

Fancy Textures

Environment Mapping

§ So far…only color lifted from textures
§ How about reflections?
§ One option -> raytracing? Rays bouncing and killing each

other…….
§ Textures Make it simpler…..eg., Environment mapping!!
§ Ray strikes surface.
§ From surface find reflection vector
§ Map reflection vector to texels . How? Different algos…
§ Use reflection vector r=e-2(n.e)n [Blinn, Newell] e= eye

vector, n=normal
§ Map ‘r’ to sphere using
§ P=arccos(-rz)
§ O=atan2(ry,rx)

§ Convert P,O to texels (u,v) by normalizing
§ Texture covers sphere surrounding the reflection point
§ Disadvantage: Need per pixel normal, lighting info.

Bump Mapping

§ Instead of color from
texture, use normal
stored in texture

§ In lighting equation,
add this normal with
existing normal

§ Modelling creases,
wrinkles complex,
texturing much faster

www.paulsprojects.net

Image Warping

§ Frames have objects in
common.

§ Rendering common objects
from scratch wasteful!

§ Store common objects between
frames!! How?

Impostor : Texture image of 3D
object on planar transparent
polygon

Static : Impostors created offline
§ Too much memory

Dynamic: Impostors created in
real-time

§ Processing Rate
higher!
§ Lower Memory

Consumption!

http://www.gris.uni-tuebingen.de/projects/ilo/repository.html

Dynamically Generated
Impostors

§ How are they
Created?

§ 3D objects surrounded
by Bounding Box

§ Journey from
FrameBuffer to
TextureBuffer!! ☺

§ Projn of BBox
§ Wrap Smallest

Rectange around it.
§ 2D Image “view-

dependent”

Congratulations!! You just created an Impostor!!

[2]

When are they used?

§ Normally what would
we think?
§ Further objects

impostors rite?

§ When view angle of
texel <
view angle of pixel
Use Impostor!!

[2]

How steady is the EYE?

§ What if object moves?
§ What if eye rotates?
§ What if eye moves

towards object?
§ What if object moves

towards eye?
Object Moves? -> Nopes

shouldn’t. Seriously,
limitation of this work.

Eye rotates, translates
within minimum range,
2D affine transformation of
Impostor solves problem.

[2]

What about Occlusion?

§ Depth Testing?
§ Depth Stored per-impostor.

All texels have same depth!!
§ Intersecting objects cause

problem!!

[5]

Personal Opinion

§ Nov 95. Hmmmm…. Quite old!!
§ Impostors reduce photorealistic quality of

image
§ Is video rate available without Impostors

modern day h/w?
§ Complexity of scene decides.
§ Not very clear….

Depth of Impostors’ polygon= MaxDepth of
any pixel in object’s image rite?

MultiLayered Impostors

§ Multiple polygonal planes
§ Therefore, multiple depth

values
§ Can reasonably solve object

intersection..hmmmmm
§ Maybe with higher

#planes, gets better

§ With Translation, different
layers become distinct!!

[5]

Nailboards

§ Addition onto Impostors
§ Stores depth value of each texel
§ While copying FB-> TB peeks at

Depth Buffer too!!
§ Since each FB element has corresponding

Depth INFO!!
§ Texel => (R,G,B,z)
§ Accurate for Object Intersections
§ Drawback: Memory Consumption High!!

Nailboards

[4]

H/W Support Image Warping

Requirements from h/w?
§ Multiple Image Layers
§ 2D simulation of 3D Transforms
§ Real fast texture memory b/w
§ Sizeable texture memory
§ Geometric , Image error calc in h/w

Talisman – Microsoft (1996)

[2]

Composited Imaging

§ No FrameBuffer
§ Image Layers with

multiple chunks.
§ Images rendered on

Image Layer
independently!!

§ So object per Image
Layer

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

(32*32) pixel
Chunk

[3]

Simulating 3D Affine
Transformations

§ Image Layer can 2D
transform

§ 2D transform to
simulate 3D affine
transforms

§ Less Expensive
§ View point rotates
§ View point translates

(small margin)

[2]

Chunks- Advantages

§ Objects sorted (in s/w by programmer) into
chunks
§ How? Object level partitioning (voxels)
§ Mapping voxels to chunks
§ Overlapping voxels copied to chunks

§ 32*32 => One chunk at a time rendered!!
§ Therefore, Z-Buffer how big?
§ Texture memory how big?
§ Can they both reside on board? Blazing

Speed!!
§ Objects (Image Layer) prioritizing in S/W

References

1. Computer Graphics using OpenGL- FS Hill
2. Talisman: Commodity Realtime 3D Graphics

for PC – Jay Torborg, James T.Kajiya
3. Dynamically Generated Imposters – Gernot

Schaufler
4. Per-Object Image Warping With Layered

Impostors – Gernot Schaufler
5. Nailboards: A Rendering Primitive for Image

Caching in Dynamic Scenes – Gernot
Schaufler

6. OpenGL Programming Guide – Addison
Wesley

