
CS 563 Advanced Topics in 
Computer Graphics
Classifying Shaders

by Dan Adams



Topics

§ Fixed function pipeline
§ Parameterized shading
§ Cook’s Shade Trees
§ Programmable shading
§ Procedural shading



Fixed-Function Pipeline

§ The standard graphics pipeline
§ A set number of T&L functions

Vertex
Transforms

Vertex
Transforms

Primitive
Assembly

Primitive
Assembly

Frame 
Buffer

Frame 
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPU

http://www.cis.upenn.edu/~suvenkat/700/



Fixed-Function Pipeline

§ Limited to how it can be changed (ie pushing 
matrices into the pipeline)
§ Implemented in hardware to be faster
§ If it’s not supported in the pipeline, you can’t 

do it.

§ Ex: glShadeModel()
§ Want to change the shading model when 

rendering
§ What can we do with the fixed-function shading?



Fixed-Function Pipeline

Flat shading (GL_FLAT)

http://www.cc.gatech.edu/classes/AY2003/cs4451_spring/linint.html



Fixed-Function Pipeline

http://www.cc.gatech.edu/classes/AY2003/cs4451_spring/linint.html

Gouraud shading (GL_SMOOTH)



Fixed-Function Pipeline

http://www.cc.gatech.edu/classes/AY2003/cs4451_spring/linint.html

Phong shading (GL_?)

§ Not supported in 
hardware so you 
can’t do it



Parameterized Shading

§ Add more flexibility but keep hardware 
speeds
§ Hardware implementation of noise-based 

functions (clouds, wood, etc) based on Perlin
Noise



Perlin Noise

§ A function which is composed of numerous 
noise function
§ Results in infinitely non-repeating detail
§ Coastlines
§ Mountain ranges
§ Clouds
§ Water
§ Etc

§ Has a very “natural” feel to it

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm



Perlin Noise

§ Noise function is basically a random 
number generator with a set seed
§ Get the same numbers each time it’s run

§ Randomness are what give the textures a 
“natural” quality

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

§ Generate a number of random 
values

§ Interpolate between them
§ Can use linear or cubic 

interpolation or a curve



Perlin Noise

§ Amplitude, wavelength, and frequency

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

frequency = 
1/wavelength



Perlin Noise

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

§ Each octave has twice the frequency of the 
previous
§ Create a number of octaves using noise 

functions and sum together

+

+ + + +

=



Perlin Noise

§ The number of octaves created depends on 
the level of detail desired
§ Too many octaves = wasted processing time
§ Too few octaves = boring Perlin function

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm



Perlin Noise

§ Examples of noise-based textures:

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm



Perlin Noise

§ Some more different examples

http://libnoise.sourceforge.net/examples/complexplanet/index.html



Perlin Noise

§ Some more different examples

http://libnoise.sourceforge.net/examples/complexplanet/index.html



Perlin Noise

§ Some more different examples

http://libnoise.sourceforge.net/examples/complexplanet/index.html



Perlin Noise

§ Some more different examples

http://libnoise.sourceforge.net/examples/complexplanet/index.html



Perlin Noise

§ Some more different examples

http://libnoise.sourceforge.net/examples/complexplanet/index.html



Perlin Noise

§ Some more different examples

http://libnoise.sourceforge.net/examples/complexplanet/index.html



Perlin Noise

§ Some more different examples

http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Students/fruit/final_writeup.html

Noise used for random movement and perturbation of 
bubbles



Parameterized Shading

§ Now back to doing this in hardware…
§ Implemented in a few different systems
§ Pixel Planes (1992)
§ PixelFlow (1989)
§ Pixel Machine (1989)

§ We can use parameters to get different 
noise-based effects
§ Rendering performed in GPU rather than CPU



Parameterized Shading

§ So now we have
§ Fixed-function pipeline abilities
§ Can supposed noise in hardware

§ Can we do more?
§ What if… we had some way to arbitrarily 

compose our own textures/shading?



Cook Shade Trees

§ Presented by Cook in 1984 [cook]
§ Using operators and operands we can 

compose our own effects using a tree 
structure

Shade tree for a copper texture



Cook Shade Trees

§ Now take this idea and try to put it into an 
assembly-type form:
§ operator operand operand operand

Copper texture tree idea in this form:
a = specular normal viewer roughness
a = * a specweight
b = * ambientweight ambient
a = + a b
color = * a coppercolor

*Can think of the shade tree as an Abstract 
Syntax Tree (AST)



Programmable & Procedural

§ The author uses these terms to basically 
mean the following:

§ programmable – You can give assembly-
type instructions to the GPU
§ procedural – Can use a higher level 

language such as C



Programmable Shading

§ Modifies the fixed-function pipeline to allow a set of 
user-provided instructions

§ First implemented in the Pixel-Planes 5 in 1992
§ First in commodity hardware in NVIDIA GeForce3

Vertex
Transforms

Vertex
Transforms

Primitive
Assembly

Primitive
Assembly

Frame 
Buffer

Frame 
Buffer

Raster
Operations

Rasterization
and

Interpolation

GPU

Small vertex
shaders

Small vertex
shaders

http://www.cc.gatech.edu/classes/AY2003/cs4451_spring/linint.html



Programmable Shading

§ Pros
§ Can now write programs for the GPU

§ Cons
§ Very difficult to write programs
§ No control constructs (if, while, etc)



Procedural Shading

§ Cook’s Shading Trees provided some 
capabilities but not all
§ Perlin’s Image Synthesizer [pis] was the first 

fully capable
§ Now have an instruction set which high-level 

languages can be compiled down to
§ Easer to write
§ Libraries of common functions
§ Can be optimized by the compiler



Procedural Shading

§ Graphics hardware now provides 
programmable vertex and fragment (pixel) 
shaders
§ First commodity hardware to support it were 

the Radeon 9700 and GeForceFX in 2002

Vertex
Transforms

Vertex
Transforms

Primitive
Assembly

Primitive
Assembly

Frame 
Buffer

Frame 
Buffer

Raster
Operations

Rasterization
and

Interpolation

Programmable
Vertex shader

Programmable
Vertex shader

Programmable
Fragment
Processor

Programmable
Fragment
Processor

http://www.cc.gatech.edu/classes/AY2003/cs4451_spring/linint.html



Procedural Shading



Procedural Shading

Melting Paint

From NVIDIA demo



Procedural Shading

Bump Horizon Mapping

From NVIDIA demo



Procedural Shading

Flare

From NVIDIA demo



Procedural Shading

Procedural Terrain

From NVIDIA demo



Procedural Shading

Vertex Noise

From NVIDIA demo



Procedural Shading

Refractive Dispersion

From NVIDIA demo



Procedural Shading

Anisotropic Lighting

From NVIDIA demo



Procedural Shading

Grass

From NVIDIA demo



Procedural Shading

Fur

[fur]



Questions

Questions?



References

§ [cook] Cook, R. L. “Shade Trees.” In 
Computer Graphics (Proc. SIGGRAPH ’84)
18(3): 223-231(1984)
§ [pis] Perlin, K. “An image synthesizer.” In 

Computer Graphics (Proc. SIGGRAPH ’85
19(3): 287296(1985)
§ [fur] Lengyel, J. et al. “Real-Time Fur over 

Arbitrary Surfaces” 2001


