CS 563 Advanced Topics In
Computer Graphics
Chapter 15: Graphics Hardware

by Dan Adams

= Buffers

= Color, Z, W, Stereo, Stencil, and Accumulation
Buffers

= Hardware Architecture
* Pipelining and Parallelization
* Implementing the Stages in Hardware
= Memory and Bandwidth
= Case Studies
= Xbox
* InfiniteReality
= KYRO

e Frame Buffer

— Can be in host memory, dedicated memory, or
memory shared by buffers and textures

— Connected to avideo Controller

Frame Buffer Output Device
(e.g. monitor)

e e

Video Controller
— AKA Digital-to-Analog Converter (DAC)

— Convertsdigital pixel valuesto analog signals for
the monitor

— Monitor has afixed refresh rate (60 to 120 Hz)

— Sends color data to monitor in sync with the
monitor beam

Frame Buffer Output Device
(e.g. monitor)

* Monitor beams moves |eft to right, top to
bottom

 Horizontal retrace

— Beam moves from end of one line to the beginning
of the next

— Does not actually set any colors
Frame Buffer

scanning
starts horizontal
3 retrace
vertical
retrace
scanning

ends

e Horizontal refresh rate (akaline rate)
— Rate at which it can draw aline

e Vertical retrace
— Returns to top left after the entire screen is drawn

e Vertical refresh rate

— How many times per second it can refresh entire screen
— Noticeable < 72 Hz by most people

Frame Buffer

scanning

starts horizontal

] retrace
vertical

retrace

scanning
ends

Example:
= 1280x1024 screen with 75 Hz refresh rate
= Updates every 13.3ms (1/ 75 = 0.0133s)

= Screen has a specified “frame size” which is 1688 x
1066 for this resolution

= Pixel clock — rate at which pixels are refreshed
= 1688*1066*75 Hz = 134,955,600 Hz = 134 Mhz
= rate = 1/ 134 Mhz = 7.410e9 = 7.4 nanoseconds

= Line rate
= 1066*75 Hz = 79,950 lines/sec

= Vertical retrace rate
= 1066 — 1024 = 42
= 42 * 1688 * 7.4 ns = 525 ns

= Noninterlaced (aka progressive scan)
= Most common for computer monitors

= |nterlaced
= Found in TVs

» Horizontal lines are interlaced (evens first, then
odds)

= Converting Is non-trivial

= High Color
= 2 bytes per pixel (15 or 16 bits for color)
= either 32,768 or 65,536 colors

= Uneven division between colors (16 / 3 = 5.3 pixels
per color?)
= Green given an extra bit because it has more effect on
the eye
= 32 *64 * 32 = 65,536
= Extra bit used not used or used for an alpha channel
m 32 *32* 32 =32,/68

= Can cause a Mach banding effect
= Differences in color are noticeable by the eye
= Similar problem with Gouraud shading
= Can use dithering to lessen effect

http://www.grafx-design.com/Olgen.html

* True Color
= 3 or 4 bytes per pixel (24 bits for color)

= 16.8 million colors
= 8 bits per color
m 255 * 255 * 255 = 16,581,385 colors

= 24 bit format is called the “packed pixel” format
= Saves frame buffer space

= 32 bit format
= Some hardware optimized for groups of 4 bytes
= Extra 8 bits can be used for an alpha

Using 24 bits corrects some problems found with
high color

» Quantization effects due to low precision (eg when using
multipass)

= Normally stores 24 bits / pixel
» Orthographic viewing
» Depth resolution is uniform
= EX:
»= Near and far planes are 100 meters apart
= Z-buffer stores 16 bits per pixel
»= 100 meters / 2716 = about 1.5 mm
= Perspective viewing
= Depth resolution is non-uniform

= Farther away you go, more precision you need to
be accurate

= Can create artifacts or popping effects

After applying perspective transformation to a
point we get a vector v:

" v=(XY,Z W)

v then divided by w so that v = (X/w, y/w,
z/w, 1)

z/w 1s mapped to the range [0, 27*b - 1] and
stored In Z-buffer

The farther away the point, the smaller z/w Is
after being mapped, and the less precision it
has.

Alternate to storing a Z-buffer
Stores the w value
Results in uniform precision

Don't have to fool around with the near and
far planes

Becoming deprecated... (?)

e Only uses one buffer which is used for drawing

 You can see primitives being drawn on the
screen

e Canresult in“tearing”
— User can see part of a primitive as its being drawn

* Not very useful for real-time graphics

e Can be used if you don't update very often
— Windows in aworkspace

Single Buffering frame 0 fram__g 1 ; fre2 e frame 3

buffer 0

o

= Overcomes problems with single buffering

» Front buffer is display while the back buffer is
drawn to

» Buffers are swapped during vertical retrace
= Avoids tearing but is not required

Double Buffering frame 0 frame 1 frame 2 frame 3

huﬁer“ .._=.-:- :.frﬂn.-:t .: .. - !]:.aéka ! i ﬁgntv | : M"; | { e

buffer1 | back || front || back || front |eeee
ik T e 7 ; '“'.-u i ' '"-_ -' H

e Swapping methods
— Page flipping

» Address of front buffer is stored in aregister. Points to
(0,0)

o Swap by writing the address of the back buffer to the
register
« Easy method for doing screen panning
— Blitting (or BLT swapping)
« Back buffer issimply copied over the front buffer

Double Buffering frame 0 frame 1 frame 2 frame 3
buffer 0 | ﬁﬂm : hack o front back [eeee

buffer 1 | hﬂck . tmnt v haek || fromt |eeee

» Adds a second back buffer, the pending buffer

= Do not have to wait for vertical retrace to start
drawing the next frame

= Do not have to wait for the back buffer to be

cleared

Triple Buffering

buffer 0

buffer 1

buffer 2

frame 0)

frame 1

frame 2

frame 3

e ;
pending
1din
h, e el

s et

~ back

b ot i e b

e = 2
e 1 Aﬁ' - .'\'t."' i
% 5

L e
3 ol X o =

L s
 front
- o

- o o e et i
e s S e =

pending

3 i k=

yrp . o

:]:.3'.‘:-:'3’: PR

o o S

S

Cfeont

o
i

S e
~ back

: .

.:-' e

= "" e I
© fromt

O, g

%

= Can increase frame rate:
= Monitor is 60 Hz

= If image generation < 1/60" sec then double and
triple buffering will get 60 fps

= If it takes > 1/60" sec, double buffering gets 30
fps while triple gets (almost) 60 fps

Triple Buffering frame0 framel frame2 frame 3

e o et

buffer 0 | pending back || front || pending [eeee
LA ';w-:'ﬁ_an.“ 3 b b ot o : o = ' 2 -'_. 2 :

o L i : s] L. = = e s "
= L3 o e e e - il o 3 Lo L S T T e .
buffer 1 | front pending back || front seee
____ e e AR ek = ; i & o o pan bl

%

buffer 2 “hau:]i» ﬁfnmta penﬂiﬂg ~ back - |eeee

* |ncreases latency
= Response time for user is basically 2 frames behind

= Pending buffer requires another color buffer
= Works well if the hardware supports it

Triple Buffering
buffer 0

buffer 1

buffer 2

frame 0)

frame 1

frame 2

frame 3

o s

o oy ?- oy
s e e
: .-

el B e e Y

e e et

back
b et i

i o 2
et ¥ oy [e
S AL
-) = '
s 3 o 2
o : £

o e e

i g, Ty et
E ii: o

oo e :

I s 3 1

5 .
Vo B o R :
e -'ﬁlm Aok 2
front . ||
o = = o el
e

i e St o
e, il

e : L o
]:: P, I G T
e 2 i L e

o S e A B
i
L2 i 0
____ﬂ ..,:a.--..t.:.- o
o o S
H

i o

e e R D :
Ly T e R e
 back

" e e . -

o s G o

%

= i
R ¥ i
: i o e

Triple Buffering frame0

frame 1

frame 2

= DirectX supports it, OpenGL does not
= Can (in theory) use as many buffers as you
want...

= Good when image generation time varies a lot
* Increases latency

frame 3

.: s o i e gk
buffer 0 | pending
e S e 2

e e et

back
b et i

i o 2
et ¥ oy [e
S AL
-) = '
s 3 o 2
o : £

o e e

i g, Ty et
E ii: o

oo e :

I s 3 1

buffer 1

i =

e e T
 back

e S

o S e A B
i
L2 i 0
____ﬂ ..,:a.--..t.:.- o
o o S
H

buffer 2 | back

3

S ;
.p" mﬂi&g‘ |

3 i

i
- ¥ i
- =t :
.
o e

= Called stereopsis or stereo vision

= Two images (one for each eye) are rendered
to fool your eyes into giving objects real depth
= Can be really convincing!
* Not everyone is able to do it (magic 3d image?)

image plane /

view directions
left eye : /

= Hardware
= QOld-school paper 3d glasses
= HMD (head mounted display)

= Shutter glasses (cheap and work well)
= Synchronizes shutter speed with the monitor refresh rate

= Now supported in the display itself
= Doubles the amount of buffer memory needed

http://www.cgg.cvut.cz/local/glasses/

ILOUL IVl O

» Normally the same sEB H{ eessolor buffer

= Stencil buffer
» Used to mask off regions of the color buffer
* 1 bit — simple masking
= 8 bits — complex effects like shadow volumes
= Accumulation buffer

= Used to add and subtract images from the color
buffer

= Needs much higher precision than the color buffer

= 48 hits for a 24 bit color buffer would allow 256
composed images

= Useful for effects like depth of field, antialiasing,
motion blur

= Useful for supporting fast antialiasing in
hardware

= Contains a set of 2, 4, or more image and Z-
buffers

= Send down a triangle once, it is sent to
multiple buffers in parallel with a different
offset in each

* |Images are recombined to do AA
= Does not require multiple passes to do AA

= Raises hardware cost; much of the pipeline
nas to be duplicated in each parallel unit

= 3dfx was the only one to ever implement it

= How much memory do we need for all these
buffers?

" EX:
» Color buffer is 1280 * 1024 * 3 (bytes) = 3.75 MB
* Double buffering doubles this to 7.5 MB
= Z-buffer has 24 bpp = 3.75 MB

= Stencil buffer of 8 bpp and accumulation buffer of
48 bpp = 8.75 MB

= /.5+3./5+8.75=20 MB

» If you are using stereo, this doubles the color
buffer and adds another 1.25 MB

= Only one Z-buffer is ever needed for the current
color buffer

* Implemented by the rasterizer in hardware

= Vertex position can be lerped (linear
Interpolation)

= Cannot do this for colors and texture
coordinates

= To correct this:

= Linearly interpolate both the textured coordinate
and 1/w

* Thus (u,v) = (u/w, v/iw) / (1/w)

= Called hyperbolic interpolation or rational linear
Interpolation

= A little history...

= Early processors just interpolated/textured spans
= 1996 — 3Dfx Voodoo 1 introduced triangle setup

= 1999 — NVIDIA GeForce256 introduced geometry
stage acceleration in hardware (fixed function

pipeline)
= Today — Accelerated geometry and rasterization
plus programmable shaders

= Trying to put as much on the card as possible

= Still some support on the CPU

= Pentium 4 has SSE 2 which are SIMD extensions
for parallel processing of vectors

= Two approaches to getting super-high
performance
* Pipelining and Parallelizing

= Pipelining

= N stages implemented in the hardware that are
pipelined together

= Gives a speedup of N

= A GPU is 100 times faster than it's equivilent CPU
because of using pipelining
» CPU actually has a higher clock speed

= Hardware is customized for one area (ie graphics
rendering)

= More operations implemented in hardware (20 pipeline
stages in the Pentium 4 and 600-800 in the GeForce3)

» Divide processing into N parallel processing
units and merge results later

= Normally done for the geometry and rasterizer
stages

» Results must be sorted at some point

Primitives are sorted before
geometry stage

Screen iIs divided into a
number of regions, or tiles

Each processor responsible for
a region

Not used much among normal
Implementations

= Stanford WireGL project
* |s now in the Chromium project (on sourceforge)

» Rendering is done with a cluster machines and
displayed using a projector for each tile

» Created as an OpenGL implementation (Quake3
anyone?)

* Pretty awesome if you need a HUGE display with
REDICULOUS resolution

» System has also added motion tracking (!)

http://chromium.sf.net | Need One Of Th

= Maybe my wife can get me one for Christmas...

74 heorianay
Eot Jofl Tewedi gz
=11
ta== 1

= e gl T (O

i

L Ty

|'E
o
o
=

3

'||||""|.:|""'|"

Distribute over the geometry units
and then sort results

Used in the InfiniteReality and
KYRO systems

After geometry stage, the primitive
location i1s known so it can resorted
to the right FG

Each FG is responsible for a region

If a triangle overlaps more than one
region it can be sent to multiple FGs
(which is bad)

Sorts fragments after

fragment

before fragment merge

Used by t

NO overla
Sort-Midd

Imbalance can occur If a set
of large triangles are sent to

one FG

generation and

ne Xbox
0 of as there is In

e

Sorts after all rasterization is done

Each pipeline renders with depth
and then results are composed
based on z values

Implemented in the PixelFlow
architecture

» Used deferred shading: only textured
and shaded visible fragments
Cannot be implemented in OpenGL
because it does not render
primitives in the order sent in

'DISPLAY

= GPU computation speed is growing
exponentially

= Memory speed and bandwidth is not

* Yet textures are the way to go for fast real-
time graphics

= Caching and prefetching used to speed up
texture access

= Rasterizer produces fragments

» Request queue gets textures from memory

= Reorder buffer sorts blocks as they were requested
= Performs at 97% of the ideal (no latency)

Rasterizer
fragment (data | texel addr
Fragment Request
FIFO cache Cache Tags miss FIFO PJ
addr addr = d?tr e
; R Reorder
Stall <——Cache Data |=—— . . _
cache Buffer et
ltexc]s bBlacks blocks
fragment |data
Texture
Filter
t
Texture Applicator

= Unified Memory Architecture
» GPU can use any of the host memory
» CPU and GPU share bus
» Used by Xbox and the SGI O2

CPU
L1, L2 caches

/s

Front-side bus, 1.0 GB

orth -nde % B

:" Memory Controller |
and Cache

Memory Bu i
4%1.6 GB/s

-South Bridge Chip
‘Audio, Network
and USB Interface

= Non-unified memory

* GPU has dedicated memory not accessible by the
CPU

= Does not have to share bus bandwidth
» Used by the KYRO and InfiniteReality

= Two methods for sending the GPU data, Pull
and Push

= Pull

= Data is written to system memory
= GPU then pulls the data from memory
= aka Direct Memory Access (DMA)

= GPU can lock a region of memory that CPU cannot
use

= GPU works faster and CPU time is saved

= AGP uses pull

= A dedicated port (ie bus) that only the CPU and GPU use
= AGP 4x is 1067 Mbytes/sec. AGP 8x (3.0) is 2.1Gbytes/sec

= Data Is written to the GPU once per frame
= More bandwidth left over for the application
» Graphics card needs to have a large FIFO buffer

» Pull method is better for memory data that is
static since It can just stay in memory

= For each pixel we need to read the z-buffer,
write back a z-value and the color buffer, and
one or more texture reads. = 60 bytes per
pixel

= Assume 60 fps with 1280x1024 resolution and
a depth complexity of 4:
4 * 60 * 1280 * 1024 * 60 bytes/s = about
18 Ghytes/s

= Assume bus speed is 300 MHz with DDRAM
(256 bits per clock):

300MHz * 256/8 = about 9.6 Gbytes/s < 18
Gbytes/s

= Memory bandwidth becomes a big bottleneck

= This can be reduced with texture caching,
prefetching, compression, etc

= Reading from buffers (Z-buffer, etc) can be
slow

= Often writing Is done over AGP while reading
IS done over PCI

= Reading from the GPU should probably be
avoided

= Status memory stores the state of a 8x8 pixel
tile in the frame buffer and a zmax for each
tile

= State can be compressed, uncompressed, or
cleared

8x8 uncompressed
z-values + z,,,,

updated
z-values

updated z,,.,

* To do a fast clear, just set all states to
“cleared”

8x8 uncompressed
z-values + z,,,,

updated
z-values

updated z,,,,

= ATI Radeon uses fast Z-clear and Z-
compression for a 25% frame rate increase
= A Differential Pulse Code Modulation (DPCM) is used
= Good when high coherence in the data
» Reduces memory bandwidth by 75%

8x8 uncompressed
z-values + z,,,,

updated
z-values

pdated =

Zmax Is used to check whethér a tile is
occluded and then pipeline Is exited early

Saves on bandwidth

Different methods

= Check the minimum z-value of the triangle vertices
against zmax. Not very accurate but very fast.

= Test the corners of the entire tile against zmax. If
larger than the tile it can be skipped.

» Test each pixel against zmax.
Implemented in both GeForce3 and Radeons

= Built by NVIDIA and Microsoft

= Uses the UMA
= Memory is divided into blocks and can be accessed in parallel

= CPU is an Intel Pentium 111 733 Mhz
= GPU is an extended GeForce3
= Supports programmable vertex and fragment shaders

http://collegehumor.com

System Memory Bus

= Has dual vertex shaders
which doubles throughput

* Pre T&L cache (4 bytes)
avoids redundant memory
fetches

= Caches vertices (used by 6
triangles on average)

aystem Memory Bus

= Post T&L cache (16 iy i T
vertices) avoids processing | 7
the same vertex more
than once with the shader

= Primitive Assembly Cache
(3 fully shaded vertices)
avoids redundant fetches
to the Post T&L cache
= ex: a vertex may be needed

multiple times in a triangle
strip

aystem Memory Bus

» Rasterizer has 4 parallel, ______ "™g&""
programmable pixel |
shaders

= TX — texture unit. Processes
fragments as they come In

= RC — register combiner.

= Combiner — computes the
final fragment color (after
fog, etc)

* Fragment merge —
computes final pixel color
(z-buffer, etc)

aystem Memory Bus

= Uses texture swizzling to increase cache

performance and page locality
0 il 16 20 64 68 30 84

= A Sort-Middle
architecture produced by
SGI

= Host Interface Processor

= Responsible for bring Iin
work to the system

= Can get display lists from
memory with DMA

= Also has a 16MB cache for £ T

display lists
= Per vertex info can be

sent directly from the host | “

= Geometry Distributor

» Passes work to the least
buys of the geometry
engines

= Each work item has a
number so they can be
sorted later into the order
they came in (compatible
with OpenGL)

= Geometry Engine

» Contains 3 Floating-point
Cores (FPC) so the
elements of a vertex can
be processed in parallel
(SIMD)

= Each FPC is like a mini-cpu

for processing vertices
» Four-stage pipeline

* In-chip memory (2560
words)

ALy

= Geometry-Raster FIFO

= Reorders vertices using
the numbers given to
them

= Feeds the correct stream
of vertices onto the Vertex
Bus

= Can hold 65,536 vertices

= Raster Memory Board

A fragment generator

Contains a copy of entire
texture memory

Scan conversion by
evaluating the plane
equations rather than
doing interpolation

= Better for small triangles
Contains 80 image
engines

Distributes work to the
Image engines

Hlast Svwiem Hus

= Implements a tile-based algorithm in hardware
- = Screen divided into equal size, rectangle regions

= Back buffer, Z-buffer, and stencil buffer only
~ need to be the size of a tile

= Stored on chip
= About 1/3 the bandwidth as the normal approach

= Geometry currently done the CPU but could be
added to the chip

Local Memory
Tile data and textures

§ won § !

CPU | Tile Accelerator (TA)] Image Svnthesis P Texture & Shading F Video

Processor (ISP) Processor (TSP) Memory

Queues all incoming vertices until and arranges
them by tiles

Creates triangle strips on the fly for each tile

The ISP processes complete tiles while the TA
processing incoming vertices in parallel

ISP handles Z-buffer, stencil buffer, and

occlusion culling
= Eliminates occluded triangles early to save bandwidth

Local Memory

Tile data and textures

§ xon §

!

CPU

Tile Accelerator (TA)

— Image Svnthesis
| Processor (ISP)

-

Texture & Shading
Processor (TSP)

L

Video
Memory

TSP does deferred sading; done after the ISP
has already done depth testing

Spans of pixels are grouped by what texture they
use before being sent to the TSP

= Swapping textures is expensive
Can texture 2 pixels simultaneously

KYRO designed to be pipelined/parallelized
= EXisting pipeline could be duplicated and parallelized

Local Memory
Tile data and textures

f won § !

Processor (ISP) Processor (TSP) Memory

CPU] Tile Accelerator (TA) s Image Svnthesis - Texture & Shading H Video

The End
(questions?)

