
CS 563 Advanced Topics in
Computer Graphics

Chapter 15: Graphics Hardware

by Dan Adams

Topics

§ Buffers
§ Color, Z, W, Stereo, Stencil, and Accumulation

Buffers
§ Hardware Architecture
§ Pipelining and Parallelization
§ Implementing the Stages in Hardware
§ Memory and Bandwidth

§ Case Studies
§ Xbox
§ InfiniteReality
§ KYRO

Display Basics
• Frame Buffer

– Can be in host memory, dedicated memory, or
memory shared by buffers and textures

– Connected to a video Controller

Display Basics
• Video Controller

– AKA Digital-to-Analog Converter (DAC)
– Converts digital pixel values to analog signals for

the monitor
– Monitor has a fixed refresh rate (60 to 120 Hz)
– Sends color data to monitor in sync with the

monitor beam

Display Basics
• Monitor beams moves left to right, top to

bottom
• Horizontal retrace

– Beam moves from end of one line to the beginning
of the next

– Does not actually set any colors

Display Basics
• Horizontal refresh rate (aka line rate)

– Rate at which it can draw a line

• Vertical retrace
– Returns to top left after the entire screen is drawn

• Vertical refresh rate
– How many times per second it can refresh entire screen
– Noticeable < 72 Hz by most people

Display Example
§ Example:
§ 1280x1024 screen with 75 Hz refresh rate
§ Updates every 13.3 ms (1 / 75 = 0.0133s)
§ Screen has a specified “frame size” which is 1688 x

1066 for this resolution
§ Pixel clock – rate at which pixels are refreshed
§ 1688*1066*75 Hz = 134,955,600 Hz = 134 Mhz
§ rate = 1 / 134 Mhz = 7.410e9 = 7.4 nanoseconds

§ Line rate
§ 1066*75 Hz = 79,950 lines/sec

§ Vertical retrace rate
§ 1066 – 1024 = 42
§ 42 * 1688 * 7.4 ns = 525 ns

Monitor Types
§ Noninterlaced (aka progressive scan)
§ Most common for computer monitors

§ Interlaced
§ Found in TVs
§ Horizontal lines are interlaced (evens first, then

odds)

§ Converting is non-trivial

Color Modes
§ High Color
§ 2 bytes per pixel (15 or 16 bits for color)
§ either 32,768 or 65,536 colors
§ Uneven division between colors (16 / 3 = 5.3 pixels

per color?)
§ Green given an extra bit because it has more effect on

the eye
§ 32 * 64 * 32 = 65,536

§ Extra bit used not used or used for an alpha channel
§ 32 * 32 * 32 = 32,768

Color Modes
§ Can cause a Mach banding effect
§ Differences in color are noticeable by the eye
§ Similar problem with Gouraud shading
§ Can use dithering to lessen effect

http://www.grafx-design.com/01gen.html

Color Modes
§ True Color
§ 3 or 4 bytes per pixel (24 bits for color)
§ 16.8 million colors
§ 8 bits per color
§ 255 * 255 * 255 = 16,581,385 colors

§ 24 bit format is called the “packed pixel” format
§ Saves frame buffer space

§ 32 bit format
§ Some hardware optimized for groups of 4 bytes
§ Extra 8 bits can be used for an alpha

§ Using 24 bits corrects some problems found with
high color
§ Quantization effects due to low precision (eg when using

multipass)

Z-buffer
§ Normally stores 24 bits / pixel
§ Orthographic viewing
§ Depth resolution is uniform
§ Ex:
§ Near and far planes are 100 meters apart
§ Z-buffer stores 16 bits per pixel
§ 100 meters / 2^16 = about 1.5 mm

§ Perspective viewing
§ Depth resolution is non-uniform
§ Farther away you go, more precision you need to

be accurate
§ Can create artifacts or popping effects

Z-buffer
§ After applying perspective transformation to a

point we get a vector v:
§ v = (x, y, z, w)

§ v then divided by w so that v = (x/w, y/w,
z/w, 1)
§ z/w is mapped to the range [0, 2^b - 1] and

stored in Z-buffer
§ The farther away the point, the smaller z/w is

after being mapped, and the less precision it
has.

W-buffer
§ Alternate to storing a Z-buffer
§ Stores the w value
§ Results in uniform precision
§ Don't have to fool around with the near and

far planes
§ Becoming deprecated... (?)

Single Buffering
• Only uses one buffer which is used for drawing
• You can see primitives being drawn on the

screen
• Can result in “tearing”

– User can see part of a primitive as its being drawn

• Not very useful for real-time graphics
• Can be used if you don't update very often

– Windows in a workspace

Double Buffering
§ Overcomes problems with single buffering
§ Front buffer is display while the back buffer is

drawn to
§ Buffers are swapped during vertical retrace
§ Avoids tearing but is not required

Double Buffering
• Swapping methods

– Page flipping
• Address of front buffer is stored in a register. Points to

(0,0)
• Swap by writing the address of the back buffer to the

register
• Easy method for doing screen panning

– Blitting (or BLT swapping)
• Back buffer is simply copied over the front buffer

Triple Buffering
§ Adds a second back buffer, the pending buffer
§ Do not have to wait for vertical retrace to start

drawing the next frame
§ Do not have to wait for the back buffer to be

cleared

Triple Buffering
§ Can increase frame rate:
§ Monitor is 60 Hz
§ If image generation < 1/60th sec then double and

triple buffering will get 60 fps
§ If it takes > 1/60th sec, double buffering gets 30

fps while triple gets (almost) 60 fps

Triple Buffering
§ Increases latency
§ Response time for user is basically 2 frames behind

§ Pending buffer requires another color buffer
§ Works well if the hardware supports it

Triple Buffering
§ DirectX supports it, OpenGL does not
§ Can (in theory) use as many buffers as you

want...
§ Good when image generation time varies a lot
§ Increases latency

Stereo Buffers
§ Called stereopsis or stereo vision
§ Two images (one for each eye) are rendered

to fool your eyes into giving objects real depth
§ Can be really convincing!
§ Not everyone is able to do it (magic 3d image?)

Stereo Buffers
§ Hardware
§ Old-school paper 3d glasses
§ HMD (head mounted display)
§ Shutter glasses (cheap and work well)
§ Synchronizes shutter speed with the monitor refresh rate

§ Now supported in the display itself

§ Doubles the amount of buffer memory needed

http://www.cgg.cvut.cz/local/glasses/

Stencil &
Accumulation
Buffers§ Normally the same size as the color buffer

§ Stencil buffer
§ Used to mask off regions of the color buffer
§ 1 bit – simple masking
§ 8 bits – complex effects like shadow volumes

§ Accumulation buffer
§ Used to add and subtract images from the color

buffer
§ Needs much higher precision than the color buffer
§ 48 bits for a 24 bit color buffer would allow 256

composed images

§ Useful for effects like depth of field, antialiasing,
motion blur

T-buffer
§ Useful for supporting fast antialiasing in

hardware
§ Contains a set of 2, 4, or more image and Z-

buffers
§ Send down a triangle once, it is sent to

multiple buffers in parallel with a different
offset in each
§ Images are recombined to do AA
§ Does not require multiple passes to do AA
§ Raises hardware cost; much of the pipeline

has to be duplicated in each parallel unit
§ 3dfx was the only one to ever implement it

Buffer Memory
§ How much memory do we need for all these

buffers?
§ Ex:
§ Color buffer is 1280 * 1024 * 3 (bytes) = 3.75 MB
§ Double buffering doubles this to 7.5 MB
§ Z-buffer has 24 bpp = 3.75 MB
§ Stencil buffer of 8 bpp and accumulation buffer of

48 bpp = 8.75 MB
§ 7.5 + 3.75 + 8.75 = 20 MB
§ If you are using stereo, this doubles the color

buffer and adds another 1.25 MB
§ Only one Z-buffer is ever needed for the current

color buffer

Perspective-Correct
Interpolation

§ Implemented by the rasterizer in hardware
§ Vertex position can be lerped (linear

interpolation)
§ Cannot do this for colors and texture

coordinates

Perspective-Correct
Interpolation

§ To correct this:
§ Linearly interpolate both the textured coordinate

and 1/w
§ Thus (u,v) = (u/w, v/w) / (1/w)
§ Called hyperbolic interpolation or rational linear

interpolation

Graphics
Architecture

§ A little history...
§ Early processors just interpolated/textured spans
§ 1996 – 3Dfx Voodoo 1 introduced triangle setup
§ 1999 – NVIDIA GeForce256 introduced geometry

stage acceleration in hardware (fixed function
pipeline)
§ Today – Accelerated geometry and rasterization

plus programmable shaders

§ Trying to put as much on the card as possible
§ Still some support on the CPU
§ Pentium 4 has SSE 2 which are SIMD extensions

for parallel processing of vectors

It's Wicked Fast
§ Two approaches to getting super-high

performance
§ Pipelining and Parallelizing

§ Pipelining
§ N stages implemented in the hardware that are

pipelined together
§ Gives a speedup of N
§ A GPU is 100 times faster than it's equivilent CPU

because of using pipelining
§ CPU actually has a higher clock speed
§ Hardware is customized for one area (ie graphics

rendering)
§ More operations implemented in hardware (20 pipeline

stages in the Pentium 4 and 600-800 in the GeForce3)

Parallelization
§ Divide processing into N parallel processing

units and merge results later
§ Normally done for the geometry and rasterizer

stages
§ Results must be sorted at some point

Sort-First
§ Primitives are sorted before

geometry stage
§ Screen is divided into a

number of regions, or tiles
§ Each processor responsible for

a region
§ Not used much among normal

implementations

Sort-First
§ Stanford WireGL project
§ Is now in the Chromium project (on sourceforge)
§ Rendering is done with a cluster machines and

displayed using a projector for each tile
§ Created as an OpenGL implementation (Quake3

anyone?)
§ Pretty awesome if you need a HUGE display with

REDICULOUS resolution
§ System has also added motion tracking (!)

I Need One of These
§ Maybe my wife can get me one for Christmas…

http://chromium.sf.net

Sort-Middle
§ Distribute over the geometry units

and then sort results
§ Used in the InfiniteReality and

KYRO systems
§ After geometry stage, the primitive

location is known so it can resorted
to the right FG

§ Each FG is responsible for a region
§ If a triangle overlaps more than one

region it can be sent to multiple FGs
(which is bad)

Sort-Last Fragment
§ Sorts fragments after

fragment generation and
before fragment merge
§ Used by the Xbox
§ No overlap of as there is in

Sort-Middle
§ Imbalance can occur if a set

of large triangles are sent to
one FG

Sort-Last Image
§ Sorts after all rasterization is done
§ Each pipeline renders with depth

and then results are composed
based on z values

§ Implemented in the PixelFlow
architecture
§ Used deferred shading: only textured

and shaded visible fragments

§ Cannot be implemented in OpenGL
because it does not render
primitives in the order sent in

It's All About the
Textures

§ GPU computation speed is growing
exponentially
§ Memory speed and bandwidth is not
§ Yet textures are the way to go for fast real-

time graphics
§ Caching and prefetching used to speed up

texture access

Texture Catching
§ Rasterizer produces fragments
§ Request queue gets textures from memory
§ Reorder buffer sorts blocks as they were requested
§ Performs at 97% of the ideal (no latency)

Memory
Architectues

§ Unified Memory Architecture (UMA)
§ GPU can use any of the host memory
§ CPU and GPU share bus
§ Used by Xbox and the SGI O2

Memory
Architectues

§ Non-unified memory
§ GPU has dedicated memory not accessible by the

CPU
§ Does not have to share bus bandwidth
§ Used by the KYRO and InfiniteReality

Buses and
Bandwidth

§ Two methods for sending the GPU data, Pull
and Push
§ Pull
§ Data is written to system memory
§ GPU then pulls the data from memory
§ aka Direct Memory Access (DMA)
§ GPU can lock a region of memory that CPU cannot

use
§ GPU works faster and CPU time is saved

§ AGP uses pull
§ A dedicated port (ie bus) that only the CPU and GPU use
§ AGP 4x is 1067 Mbytes/sec. AGP 8x (3.0) is 2.1Gbytes/sec

Push Method
§ Data is written to the GPU once per frame
§ More bandwidth left over for the application
§ Graphics card needs to have a large FIFO buffer

§ Pull method is better for memory data that is
static since it can just stay in memory

Ex: How Much
Bandwidth?

§ For each pixel we need to read the z-buffer,
write back a z-value and the color buffer, and
one or more texture reads. = 60 bytes per
pixel
§ Assume 60 fps with 1280x1024 resolution and

a depth complexity of 4:
4 * 60 * 1280 * 1024 * 60 bytes/s = about
18 Gbytes/s

Ex: How Much
Bandwidth?

§ Assume bus speed is 300 MHz with DDRAM
(256 bits per clock):
300MHz * 256/8 = about 9.6 Gbytes/s < 18
Gbytes/s
§ Memory bandwidth becomes a big bottleneck
§ This can be reduced with texture caching,

prefetching, compression, etc

Reading from
Buffers

§ Reading from buffers (Z-buffer, etc) can be
slow
§ Often writing is done over AGP while reading

is done over PCI
§ Reading from the GPU should probably be

avoided

Hardware Z-buffer
§ Status memory stores the state of a 8x8 pixel

tile in the frame buffer and a zmax for each
tile
§ State can be compressed, uncompressed, or

cleared

Hardware Z-buffer
§ To do a fast clear, just set all states to

“cleared”

Hardware Z-buffer
§ ATI Radeon uses fast Z-clear and Z-

compression for a 25% frame rate increase
§ A Differential Pulse Code Modulation (DPCM) is used
§ Good when high coherence in the data
§ Reduces memory bandwidth by 75%

Hardware Occlusion
Culling

§ Zmax is used to check whether a tile is
occluded and then pipeline is exited early
§ Saves on bandwidth
§ Different methods
§ Check the minimum z-value of the triangle vertices

against zmax. Not very accurate but very fast.
§ Test the corners of the entire tile against zmax. If

larger than the tile it can be skipped.
§ Test each pixel against zmax.

§ Implemented in both GeForce3 and Radeons

Case Study: Xbox
§ Built by NVIDIA and Microsoft
§ Uses the UMA
§ Memory is divided into blocks and can be accessed in parallel

§ CPU is an Intel Pentium III 733 Mhz
§ GPU is an extended GeForce3
§ Supports programmable vertex and fragment shaders

http://collegehumor.com

Case Study: Xbox
§ Has dual vertex shaders

which doubles throughput
§ Pre T&L cache (4 bytes)

avoids redundant memory
fetches
§ Caches vertices (used by 6

triangles on average)

Case Study: Xbox
§ Post T&L cache (16

vertices) avoids processing
the same vertex more
than once with the shader
§ Primitive Assembly Cache

(3 fully shaded vertices)
avoids redundant fetches
to the Post T&L cache
§ ex: a vertex may be needed

multiple times in a triangle
strip

Case Study: Xbox
§ Rasterizer has 4 parallel,

programmable pixel
shaders
§ TX – texture unit. Processes

fragments as they come in
§ RC – register combiner.
§ Combiner – computes the

final fragment color (after
fog, etc)
§ Fragment merge –

computes final pixel color
(z-buffer, etc)

Case Study: Xbox
§ Uses texture swizzling to increase cache

performance and page locality

Case Study:
InfinteReality

§ A Sort-Middle
architecture produced by
SGI
§ Host Interface Processor
§ Responsible for bring in

work to the system
§ Can get display lists from

memory with DMA
§ Also has a 16MB cache for

display lists
§ Per vertex info can be

sent directly from the host

Case Study:
InfinteReality

§ Geometry Distributor
§ Passes work to the least

buys of the geometry
engines
§ Each work item has a

number so they can be
sorted later into the order
they came in (compatible
with OpenGL)

Case Study:
InfinteReality

§ Geometry Engine
§ Contains 3 Floating-point

Cores (FPC) so the
elements of a vertex can
be processed in parallel
(SIMD)
§ Each FPC is like a mini-cpu

for processing vertices
§ Four-stage pipeline
§ In-chip memory (2560

words)

Case Study:
InfinteReality

§ Geometry-Raster FIFO
§ Reorders vertices using

the numbers given to
them
§ Feeds the correct stream

of vertices onto the Vertex
Bus
§ Can hold 65,536 vertices

Case Study:
InfinteReality

§ Raster Memory Board
§ A fragment generator
§ Contains a copy of entire

texture memory
§ Scan conversion by

evaluating the plane
equations rather than
doing interpolation
§ Better for small triangles

§ Contains 80 image
engines
§ Distributes work to the

image engines

Case Study: KYRO
§ Implements a tile-based algorithm in hardware
§ Screen divided into equal size, rectangle regions
§ Back buffer, Z-buffer, and stencil buffer only

need to be the size of a tile
§ Stored on chip
§ About 1/3 the bandwidth as the normal approach

§ Geometry currently done the CPU but could be
added to the chip

Case Study: KYRO
§ Queues all incoming vertices until and arranges

them by tiles
§ Creates triangle strips on the fly for each tile
§ The ISP processes complete tiles while the TA

processing incoming vertices in parallel
§ ISP handles Z-buffer, stencil buffer, and

occlusion culling
§ Eliminates occluded triangles early to save bandwidth

Case Study: KYRO
§ TSP does deferred shading; done after the ISP

has already done depth testing
§ Spans of pixels are grouped by what texture they

use before being sent to the TSP
§ Swapping textures is expensive

§ Can texture 2 pixels simultaneously
§ KYRO designed to be pipelined/parallelized
§ Existing pipeline could be duplicated and parallelized

The End
(questions?)

