CS 563 Advanced Topics in Computer Graphics Adaptive Graphics

by Peter Lohrmann

Introduction

- Recent Technological Advances
- New Problems
- Adaptive Graphics
- Data Transmission
 - Data Representations
 - Resource Monitoring
 - Selection Heuristics
 - Interaction
- Other Considerations
- Other forms of Adaptive Graphics

Recent Technological Advances

- Cell Phones
 - Small, Almost full color LCD displays
 - Wall papers, screen savers, video cameras
- PDAs
 - Medium sized, Full color LCD displays
 - Network Capable
- Tablet PC's, Laptops, Desktop Computers
 - Common sized, full color displays
 - Network Ready
- Computer Clusters & Power Walls
 - Incredible processing power
 - Giant Displays

[4]

New Problems

- Large variations in ...
 - Processing power
 - Screen resolution
- New scanning and imaging technologies
 - Incredibly detailed models
 - More information than needed
- Need a way to adapt these models to advances in technologies with graphic displays

Adaptive Graphics

- "When small, large and everything in between coexist in the same networked environment, we are faced with the challenge of providing customized access to information" [1]
- "... a unifying framework that allows visual representations of information to be customized and mixed together into new ones." [1]
- Customizing a single model to be rendered on multiple networked devices of varying capabilities.

Data Transmission

- Data sent is dependent on client capabilities
 - A networked PC
 - full data set to render locally
 - A wireless PDA
 - low resolution model
 - Billboard cloud
 - Point-based model
 - textured box
 - A text-only cell phone
 - ASCII image
- Transcoding converting between different representations based on client capabilities.

Data Representations

- Simple models
- Complex models
 - Breakdown into simple components
 - At creation time (CAD models)
 - On the fly (using spatial partitioning)
- Metadata
 - Relate model components
 - Geometric information (bounding boxes)
 - Representation information

Resource Monitoring

- Maintain continuous stream
- Determine optimal representation for transmission
- Four general areas to monitor
 - Client's rendering abilities
 - Servers rendering abilities
 - Load on the server
 - Communication link performance

Selection Heuristics

- Goal: mimic partitioning made by human eye
 - In practice this is difficult
- Example: projected screen size
 - Based on metadata
 - Histogram of colored bounding boxes made
 - Download larger components
 - Render and send the rest as context image

General Heuristic

- Three characteristics to consider
 - T: ~time to generate, send, and deliver data
 - Q: quality of representation to full-resolution data
 - I: level of interaction
- Of all representations such that
 - T less then allotted transfer budget
 - Highest Q is selected
 - Highest I is tie-breaker

Interaction

- Two datasets
 - View-independent (cube map)
 - View-dependent (ply model)
- Impractical to generate every frame
 - Remove view-dependent data until movement complete
 - Use downloaded data to generate new view
 - Predict model's position and send corresponding data
- Real-time visualizations, simulations, games

Other Considerations

- Transfer protocol
- Scalability
 - more networked devices
 - Need for proxies
- Data security
 - Encryption
 - Watermarks
- Database management

"...not every man-made surface is a display

yet" [1]

Philips new mirror ?

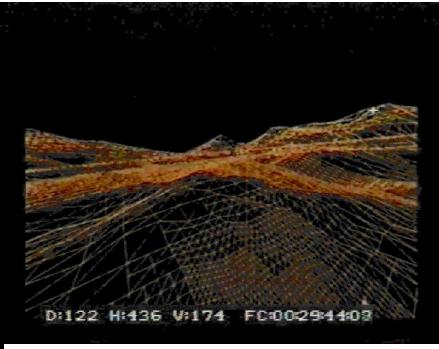
"...not every man-made surface is a display

yet" [1]

Philips new TV!

Eye tracking for perceptually adaptive

graphics [2]



Eye tracking for perceptually adaptive

graphics [2]

Perceptually adaptive graphics cont'd

Perceptually adaptive graphics cont'd

The Invisible Man!

....or...

The Coat of Invisibility. [3]

References

- [1] IEEE Computer Graphics and Applications, vol. 2, no. 1, Jan-Feb 2003, pages 6-10. http://www.research.ibm.com/people/i/imarti n/papers/visviewpoints.html
- [2] Eye Tracking Techniques for Perceptually Adaptive Graphics. Duchowski, Andrew T. http://isg.cs.tcd.ie/campfire/andrewduchowski.html
- http://www.evl.uic.edu/cavern/sage/introduc tion.html

References

- [3]http://www.dottocomu.com/b/archives/00 0170.html
 - http://www.star.t.utokyo.ac.jp/projects/MEDIA/xv/images/ocokugai3.mpg (video clip)
- [4]http://www.wpi.edu/Academics/CCC/HPC/ AG/
- Martin, Ioana. ARTE—an adpative rendering and transmission environment for 3D graphics.
 - http://portal.acm.org/citation.cfm?id=376299
- http://www.research.ibm.com/people/i/imarti n/arte-02.html