
Surface Reflection Models
Frank Losasso (flosasso@nvidia.com)

Introduction

One of the fundamental topics in lighting is how the light interacts with the environment.
The academic community has researched several models over the last century, but for the
most part, we are still stuck with the most basic of models. The reason for this is for the
most part the lack of computational power, making it difficult to use more truthful
models in real-time. The goal of this paper is to investigate the viability of some of the
more sophisticated surface reflection models that have been created, giving developers a
sense as to how much computational power needs to be used to create better looking
surfaces.

Traditionally, the most used method of finding the color of a pixel has been through
Gouraud interpolation of Lambert's Cosine Law at the vertices. This lighting model is
extremely cheap to compute and is amenable to fixed function pipelines. With the advent
of GPUs, Phong interpolation has become a viable option. This model has allowed for
innovations like bump mapping giving more realism to modern virtual worlds. The
underlying assumptions however are still the same; the surfaces are Lambertian.
Unfortunately, this has the side effect of making most of the computer generated images
look very much alike, and very different from the real world. The Lambertian surface
assumption works great for some materials (like plastic), which means that different
models must be used if other materials are to be represented faithfully. And this is what
we will investigate over the next few pages.

The Lambertian Lighting Models

Lambert created this model over a century ago, and as mentioned previously, it is still the
most used model (by a huge margin) in real time graphics today. Lambert assumed that
when light strikes a surface, the light is reflected equally in all directions. The light that
strikes any given part of a surface is proportional to the cosine of the incident angle1.

The Lambertian Diffuse Lighting Equation:

()LNfkkI attda ⋅+=

1 Please see Appendix A for explanation of terms and symbols

The cost of this equation is extremely small, and the results are usable, but it does give
the appearance that the lit object is made of rough plastic (no specular component).

Screenshot of Lambertian lighting

Diagram showing the amount of light emitted in all directions given a light direction (purple line)

The bottom two screenshots give a pictorial description of the behavior of the function.
The white wireframe contour indicates how much light is given off in each direction, and
the purple line indicates the light vector (the direction from which the light is coming).
Notice that when the light is coming from an angle, the amount of light reflected in all
directions is less that when the incident angle is close to zero (the light vector is
perpendicular to the surface)

The Phong Lighting Model

Phong lighting is the other major lighting model that is used in real time rendering,
especially after the advent of programmable pipelines. Phong did not change any of
Lamberts assumptions, and hence the cosine of the angle between the incident light
vector and the surface normal is still used to calculate the diffuse component of the
surface. Phong did however create Phong interpolation that involves the interpolation of

the vectors across the faces of the polygons as opposed to colors. The largest benefit of
interpolating vectors across the polygon is that accurate specular highlights can be
reproduced. The major drawback of calculating the lighting equation at every pixel using
these interpolated vectors is of course that a lot more computational power is used.

The Phong Lighting Equation:

() n
attsattda REfkLNfkkI)(⋅+⋅+=

Two other advantages of Phong interpolation are that it is easy to add bump mapping to
surfaces, and the visual appearance of the surface is significantly better than per-vertex
interpolated lighting.

Objects that are lit by Phong lighting tend to look like various types of plastic (depending
on the specular exponent).

Screenshot of Phong lighting

Figures clearly showing that the specular highlight is in the direction of the reflection vector. The
diffuse component is the same as the Lambertian diffuse component.

The Cook-Torrance Lighting Model

The model presented by Cook and Torrance, strives for as much physical realism as
possible, as opposed to the models above that are made entirely ad-hoc for computer
graphics only, the Cook-Torrance model uses physical properties, and has all the nice
properties one would expect a BRDF to have (such as energy conservation, complex
substructures, and a predictive result).

BRDFs like Cook-Torrance also has the advantage of using parameters with physical
analogies, meaning that artists can tweak the properties of the surface easily to create
realistic looking objects.

The Cook-Torrance model assumes that the surface is made up of microscopic perfect
Lambertian reflectors called microfacets. Several of the terms in the lighting equation
deal with how these microfacets are oriented, masked and shadowed.

The Cook-Torrance Lighting Equation

)(cos4

))((
)(

)(
)(

)(

42

2)tan(

β

π
θ

ρ

π
θ

ρ

β

λ

λ

m
e

D

NENL
DGF

fk

NE
DGF

kNLkkI

m

i
atts

i
sda







−

=

⋅⋅
=

⋅
+⋅+=

The D term in the equation is the distribution function of the microfacets based on the
Beckman distribution function. The m parameter is the root-mean-square (RMS) of the
slope of the microfacets. This means that a large m makes the reflections spread out
(since the average slope of the microfacets is larger). The G term is the geometric
attenuation term, which deals with how the individual microfacets shadow and mask each
other. The F term is the Fresnel Conductance term that is wavelength dependent (notice
the λ), but for computational simplicity, we will assume that it is wavelength independent
(and hence only one calculation is needed). The Fresnel Conductance term deals with the
amount of light that is reflected versus absorbed as the incident angle changes (an
example of this is often seen when driving on a straight road, and the road appearing
mirror- like when viewed from grazing angles).

Screenshot of Cook-Torrance lighting

From these diagrams, it is clear that this BRDF is clearly different. Notice the complete change in
behavior when the incident angle is large

The Blinn Lighting Model

The Jim Blinn model for specular reflection is built on top of the work done in 1967 by
Torrance and Sparrow who worked on a model to explain the fact that the specular
intensity varies with both the direction of the light source and the direction of the viewer,
whereas previous models had ignored the direction of the viewer. The Blinn Model is a
modification of the Torrance-Sparrow model that yields similar results, but is
significantly cheaper to compute.

The Blinn Lighting Equation:

2

22

2

1)1()(

)(
)(









+−⋅

=

⋅
=

cHN
c

D

NE
DGFfkI i

atts
θλ

The lighting equation has the same form as the Cook-Torrance lighting equation above,
with a geometric attenuation factor and a Fresnel conductance term. The distribution
function (D) is now significantly easier to compute.

Screenshot of Blinn lighting

Diagrams depicting the Blinn BRDF clearly show that Blinn lighting is similar to Cook-Torrance
Lighting

It is evident from the screenshots that it is now possible to make surfaces that look more
like metal than plastic using this equation, but without the huge cost of the Cook-
Torrance or the Torrance-Sparrow models. Just like all the other per pixel based methods,
the per pixel version of this lighting model is also amenable to add-ons such as bump
mapping.

The Oren-Nayar Lighting Model

Oren and Nayar created a new BRDF in the hope to ‘generalize’ the Lambertian diffuse
lighting model. This BRDF can reproduce several rough surfaces very well, including
wall plaster, sand, sand paper, clay, and others. It is however very computationally
expensive, and it requires the calculation of azimuth and zenith angles.

The need for a better diffuse lighting model seems very real, and in their original paper,
Oren and Nayar presented a clay vase that was rendered using the Lambertian and their
proposed models compared to a real image. It is glaringly obvious from that
demonstration that the Lambertian model was not suitable for representing certain
materials, whereas in this case their model was much better.

This lighting equation can be calculated either per-pixel or per-vertex, and a per-pixel
implementation is amenable to bump mapping, although the pixel program may get
prohibitively expensive.

The Oren-Nayar Lighting Equation (the simplified qualitative model):

[]()()

09.0
45.0

33.0
5.00.1

)tan()sin()cos(,0max)cos(

2

2

2

2

0

+
=

+
−=

−+=

σ
σ
σ

σ

βαφφθ
π
ρ

B

A

BAEfkI iriattd

The lighting equation above is simplified model that Oren and Nayar presented in their
paper. It ignores terms like inter-reflections, in an effort to make the model cheaper to
calculate.

Since hardware like nv30 can calculate the above equation in hardware, at the fragment
shader level, no preprocessing is necessary, which is he lpful if the light configuration or
the geometry is modified.

Screenshot of Oren-Nayar lighting

At low angles of light incidence, the Oren-Nayar approximation is similar to the Lambertian model,
but at high angles of incidence, the result is flatter, making the edges brighter.

As the screenshots above show, the benefit to using the Oren-Nayar lighting model over
the Lambertian model is probably not worth the increase computational requirements.

The Minnaert Lighting Model

Minnaert added darkening limbs to the lighting equations to make the surface seem
darker from certain viewing/lighting directions. This effect is seen in some types of
clothing (such as velvet).

The computational power required to implement Minnaert style lighting is not very high,
and can easily be optimized through the use of a texture lookup.

The Minnaert Lighting Equation:

kk
attd ENLNLNfkI −⋅−⋅⋅= 1)1()(*)(

Note that the first dot product can be combined with the second making the exponent
k+1. The first part of the equation is simply Lambertian lighting, which is then modulated
by the darkening factor.

This lighting model is well suited for bump mapping in it’s per-pixel variant.

Screenshot of Minnaert lighting

It is clear from the diagrams that the darkening limbs bring the amount of light reflected towards
zero when the viewer looks onto the surface at perpendicular angles

Wards Anisotropic Lighting Model

An isotropic surface has the property that for any given point on the surface, the light
reflected does not change when the surface is rotated about the normal. This is the case
for many materials, but some materials such as brushed metal or hair this is not the case.
The reason for these anisotropic surfaces is that the micro facets that make up the surface
have a preferred direction in the form of parallel grooves or scratches. There are several
ad-hoc models for lighting anisotropic surfaces that have been developed for use in real
time graphics. Other nVidia demos for anisotropic lighting use a texture lookup based on
the cosine of the angle between the surface normal and the light vector one axis, and the
cosine of the angle between the surface normal and the half angle vector on the other
axis. If the texture map has a bright line down the diagonal, then the surface will be
bright when those two values are approximately the same. The approach presented here
does not use any textures, but is instead based on the BRDF introduced by Greg Ward
Larson in 1992.

The Ward Anisotropic Reflection Model:

)(1
2

22

4
)(

))((
1

)(NH

YHXH

yx
attsattd

yx

e
LN

ENLN
fkLNfkI •+










 •
+







 •

−•
••

+⋅=
αα

αα

The X and Y terms are two perpendicular tangent directions on the surface. They give
represent the direction of the grooves in the surface. The α terms are the standard
deviations of the slope in the X and Y direction (given by their respective subscripts).

Proper tessellation is essential when per vertex calculations are used; otherwise per pixel
calculations should be used.

Screenshot of Wards Anisotropic lighting (The grooves in the surface were made to look like circular
brushed metal patterns)

The diagrams of the function clearly show that the lobe of reflected light is oriented perpendicularly
to the groove in the surface (the grove is oriented with the wireframe box in the left-right direction)

Environment Mapping Based Lighting Models

A lot of research has been done recently on environment map based lighting. Most
techniques are concerned with different ways of creating the environment map, to create
a realistic looking lighting model. The nice things about environment maps is that it’s all
precomputed and as long as the lights are static, and the surface being lit doesn’t change
position too much, environment mapping is a very good looking, and very cheap way of
lighting objects.

The general idea of environment map based lighting is that all of the lighting
computations are done off- line for all directions at a given point, P. The data is then
stored in a cube map, which is used to fetch the light value for any point on a surface that
is approximately located where the original point P was. This means that incredibly
complex and expensive lighting solutions can be computed, and then cheaply applied to
an object in real-time when required.

There are several drawbacks to the method as well, many of which should be apparent
from the paragraph above. If the surface being lit is not at the location where the point P
was, then the cube map may be useless, and creating a new one may be prohibitively
expensive. If any of the lights lighting the scene are moved, then the cube map will also
have to be computed, so in general, the technique is only great for a complex object that
is relatively far away from static lights in comparison to it’s size and the movements it
will make.

Appendix A

The following table gives each symbol used in this paper and an explanation.

Symbol Name Explanation
I Intensity The output intensity from the lighting equation. This is

the final intensity of the fragment.
kd Diffuse Reflection

Coefficient
The fraction of light that is reflected through diffuse
reflection

ks Specular Reflection
Coefficient

The fraction of light that is reflected through specular
reflection (note that the diffuse and specular coefficients
should add up to one)

N Surface Normal Normalized direction vector that is perpendicular to the
surface

L Light Vector Normalized direction vector that points from the surface
point to the light location

E Eye Vector Normalized direction vector that points from the surface
to the viewer (camera location)

H Half Vector Normalized direction vector that is the average of the
light and viewing vector (normalize (L+V))

R Reflection Vector Normalized vector that is in the direction of the Light
Vector, rotated around the Normal Vector 180 degrees.
Calculated as follows:

LNNLR −⋅=)(2
n Specular Exponent The specular exponent determines how ‘sharp’ the

specular highlight is (higher is ‘sharper’)
c Ellipsoid

Eccentricity
The eccentricity of the micro facets (0 for very shiny, 1
for very dull)

c1,c2,c3 Attenuation
Coefficients

The coefficients for constant, linear and quadratic
attenuation of the light source, respectively.

d Light Distance The distance to the light
G Geometric

Attenuation
The attenuation factor due to self-shadowing and
masking of micro facets on the surface. Calculated as
follows:









⋅
⋅⋅

⋅
⋅⋅

=
HV

LNHN
HE

ENHN
G

))((2
,

))((2
,1min

F Fresnel
Conductance Term

Fresnel determines the amount of reflection of the
surface (increases as the zenith angle becomes larger).
Calculated as follows:

1

)cos(

)1)((
)1)((

1
)(
)(

2
1

22

2

2

2

2

−+=

⋅==









+−
−+

+
+
−

=

cng

HLc

cgc
cgc

cg
cg

F

iθ

For simplification, the Fresnel conductance term can
also be a approximated by the following (much cheaper)
equation:

()() ()55)(1)(11 ENnENF ⋅−+⋅−−=
fatt Attenuation Term The fraction of light that reaches the surface as an effect

of light attenuation. Calculated as follows:

)1,
1

min(
2

321 dcdcc
f att ++

=

Note that is real life, light is attenuated with the square
of the distance, but often, the heuristic (hack) above
works better.

Appendix B

The following table shows the relative costs of the different lighting models in terms of
vertex shaders, pixel shaders, and texture lookups.

0

20

40

60

80

100

120

140

160

La
mbe

rtia
n (

pe
r ve

rtex
)

La
mbe

rtia
n (

pe
r p

ixe
l) Ph

ong

Coo
k-T

orr
an

ce
(pe

r ve
rtex

)

Coo
k-T

orr
an

ce
(pe

r p
ixe

l)

Blin
n (

pe
r v

ert
ex)

Blin
n (

pe
r p

ixe
l)

Oren
-Naya

r (p
er

ver
tex

)

Oren
-Naya

r (p
er

pix
el)

Minn
ae

rt (p
er

ver
tex

)

Minn
ae

rt (p
er

pix
el)

An
iso

tro
pic

 (p
er

ver
tex

)

An
iso

trop
ic (

pe
r p

ixe
l)

En
viro

nm
en

tal
(pe

r ve
rtex

)

Pixel Shader Cost
Vertex Shader Cost

L
am

b
er

ti
an

 (
p

er
 v

er
te

x)

L
am

b
er

ti
an

 (
p

er
 p

ix
el

)

P
h

o
n

g

C
oo

k
-T

o
rr

an
ce

 (
p

er
 v

er
te

x)

C
oo

k
-T

o
rr

an
ce

 (
p

er
 p

ix
el

)

B
lin

n
 (

p
er

 v
er

te
x)

B
lin

n
 (

p
er

 p
ix

el
)

O
re

n
-N

ay
ar

 (
p

er
 v

er
te

x)

O
re

n
-N

ay
ar

 (
p

er
 p

ix
el

)

M
in

n
ae

rt
 (

p
er

 v
er

te
x)

M
in

n
ae

rt
 (

p
er

 p
ix

el
)

A
n

is
o

tr
o

p
ic

 (
p

er
 v

er
te

x)

A
n

is
o

tr
o

p
ic

 (
p

er
 p

ix
el

)

E
n

vi
ro

n
m

en
ta

l (
p

er
 v

er
te

x)

Vertex Shader Cost 32 27 29 106 28 79 28 83 28 57 28 108 28 32
Pixel Shader Cost x 31 51 x 109 x 80 x 88 x 50 x 103 x
Textures Required 0 0 0 0 0 0 0 0 0 0 0 0 0 1+

