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Geometric Operations

e Filters, point operations change intensity

e Pixel position (and geometry) unchanged

e Geometric operations: change image geometry
e Examples: translating, rotating, scaling an image

Examples of
Geometric
operations




Geometric Operations

e Example applications of geometric operations:
e Zooming images, windows to arbitrary size
e Computer graphics: deform textures and map to arbitrary surfaces

e Definition: Geometric operation transforms image / to new
image I’ by modifying coordinates of image pixels
I(z,y) — I'(z',y)

e Intensity value originally at (x,y) moved to new position (x’,y’)

(X.y)

Example: Translation
geometric operation
moves value at
(x,)y)to (x +d,,y +d,)




Geometric Operations

e Since image coordinates can only be discrete values, some
transformations may yield (x’,y’) that’s not discrete

e Solution: interpolate nearby values



Simple Mappings :

e Translation: (shift) by a vector (d,, d,)
T,:x =x+d, or (zc’) _ (af:) n (dm)
T,y =y+d, y’ Yy d,

e Scaling: (contracting or stretching) along x or y axis by a factor
S, 0r s,

s e ()-(0)0)
T,y =s4-y y’ 0 sy Y




Simple Mappings

e Shearing: along x and y axis by factor b, and b,

)

T,:2' =x+by-y '\ (1 b, .
T,y =y+b,- -z ot y' ) \by 1
e Rotation: the image by an angle a

T,:2 =x-cosa — y-sina
T,:y =x-sina +y-cosa

'\  [cosa —sina x
y' )]  \sina cosa Y

x
Y




Image Flipping & Rotation by 90
degrees

We can achieve 90,180 degree rotation easily

Basic idea: Look up a transformed pixel address instead of
the current one

To flip an image upside down:

e At pixel location xy, look up the color at location x (1 —y)

For horizontal flip:
e At pixel location xy, look up (1 —x) vy

Rotating an image 90 degrees counterclockwise:
e At pixel location xy, look up (y, 1 —x)



Image Flipping, Rotation and Warping

e Image warping: we can use a function to select which pixel
somewhere else in the image to look up

e For example: apply function on both texel coordinates (x, y)

X=X+ Yy*sin(z*Xx)




Homogeneous Coordinates

e Notation useful for converting scaling, translation, rotating
into point-matrix multiplication

e To convert ordinary coordinates into homogeneous
coordinates

. x h x
xr = ( ) convertsto z= |9y | = | hy
4 h h



Affine (3-Point) Mapping

e Can use homogeneous coordinates to rewrite translation,
rotation, scaling, etc as vector-matrix multiplication

!

I ail ai2 ais x
!/

Y = | G21 @22 a23 || Y
1 0O 0 1 1

e Affine mapping: Can then derive values of matrix that achieve
desired transformation (or combination of transformations)

e Inverse of transform matrix is inverse mapping



Affine (3-Point) Mapping

e What’s so special about affine mapping?

e Maps
e straight lines -> straight lines,
e triangles -> triangles
e rectangles -> parallelograms
e Parallel lines -> parallel lines

e Distance ratio on lines do not change



Non-Linear Image Warps

Original Twirl Ripple Spherical



Twirl

Notation: Instead using texture colors at (x’,y’), use texture colors at

twirled (x,y) location
Twirl?

with

Rotate image by angle a at center or anchor point (x.,y,)

Increasingly rotate image as radial distance r from center

increases (up tor,,,)

Image unchanged outside radial distance r,,,,

. re+1-cos(3)  for r < ipax
T, : ==
x’ for » > rpax-
-1 Yo + 1 -sin(3)  for r < rpax
' A
! yf for r > rmax.
d, =2 — z,. r=/d: +dz,
dy = Y = Ye. 3= Arctan(dy._ dy) + - (

Tmax—T )

r'r-.l'f'l ax




Ripple

e Ripple causes wavelike displacement of
image along both the x and y directions

m—1 . . s 2wy’
I " : =2 +ag blll( - )

L]

H B
ﬂ'-:c’)

L

T,h: y=y +ay-sin(

e Sample values for parameters (in pixels) are
e 7,=120
o T,=250
e a~10
e a~15




Spherical Transformation

e Imitates viewing image through a lens placed over image
e Lens parameters: center (x,, Y. ), lens radius r,,, and refraction index p

e Sample values p = 1.8 and r, . = half image width —

-

z-tan(fFz) for r < rpax

o
|0 for r > rpax.

(z-tan(B,) for r < rmax

y
0 for r > rmax.

dy = 2’ —x,, r=4/d +d§ :

R / s — ,.2 f'2
dy—y_yc: ""_\/'J’I_'[la_;e;{_'r 3

) . Sill_l (W)

1
p
By = (1—%) .sin_l(ﬁ).




Image Warping
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How to tell if 2 Images are same?

e Pixel by pixel comparison?

e Makes sense only if pictures taken from same angle, sar
lighting, etc

e Noise, quantization, etc introduces differences

e Human may say images are same even with numerical
differences




Comparing Images

e Better approach: Template matching

e Identify similar sub-images (called template) within 2 images

e Applications?
e Match left and right picture of stereo images

e Find particular pattern in scene




Template Matching

e Basic idea

e Move given pattern (template) over search image

e Measure difference between template and sub-images at

different positions

e Record positions where highest similarity is found

Sublmage

A

(a) original image I

(b) reference image R

Template



Template Matching

e Difficult issues?
e What is distance (difference) measure?
e What levels of difference should be considered a match?

e How are results affected when brightness or contrast
changes?

Sublmage

A

Template

(a) original image I (b) reference image R



Template Matching in Intensity Images

e Consider problem of finding a template (reference image)
within a search image

e Can be restated as Finding positions in which contents of R
are most similar to the corresponding subimage of |

e If we denote R shifted by some distance (r,s) by

% wry
(0,0)"
A (7} : I ,
Roo
= )
I - gearch image [
hI iiiiiiiii ,{- 7777777 ’:‘i i 777777 SearCh region
— _ _ R‘r s i E ------ ".-_',v
R =R oy || el
________________________________ .____-__-__-------_-i'
vy ““reference image R shifted to (r,s)



Template Matching in Intensity Images

e We can restate template matching problem as:

e Finding the offset (r,s) such that the similarity between the shifted
reference image R, s and corresponding subimage | is a maximum

- e
(0,0)°
A W ; T u
Roo s
“- search image [
| I " Wr search region
R, s(u,v) = R(u —r,v — s) - L
__________________________________________________ o
Y% “reference image R shifted to (r,s)

e Solving this problem involves solving many sub-problems



Distance between Image Patterns

e Many measures proposed to compute distance between the
shifted reference image R, ; and corresponding subimage |

% reference image R, s

—+-distance for position (r,s)

search image [




Distance between Image Patterns T

e Many measures proposed to compute distance between the
shifted reference image R, ; and corresponding subimage |

e Sum of absolute differences:

da(r,s) = > |I(r+i,s+j)— R(i,5)
(i,J)ER

e Maximum difference:

dar(r,s) = max [I(r+i,s+j) — R(1, j)|
(i,7)ER
e Sum of squared differences (also called N-dimensional
Euclidean distance):

aplrs) = [ 3 Ue+ivsti) - RG]

(i,J)ER



Distance and Correlation

e Best matching position between shifted reference image R,
and subimage | minimizes square of d. which can be
expanded as

d%(r,s)= Y (I(r+i,s+5) — R(i,7))

(i,7)ER
= > P(r+is+j) + > R*i,5)— 2> I(r+i,s+j)- R(i, )
E’i,j)ER ) Ez‘,j)eR } &i,j)ER )
Ar, s) B C(r, s)

e Btermis a constant, independent of r, s and can be ignored

e A term is sum of squared values within subimage / at current
offsetr, s



Distance and Correlation

d3(r,s) = Y (I(r+i,s+j) — R(i,5))’

(.,7)ER
=Y P(r+iys+i) + > Ri,5) =2 I(r+i,s+j)- R(i, )
&z’,j)eR J Sz‘,j)eR } Sﬂi,j)eR )
A(r, s) B C(r,s)

C(r,s) term is linear cross correlation between I and R defined as

o ¢} o.¢}

(I®R)(r,s)= »_ Y I(r+i,s+j) R(,j)

T=—00 J=—00

Since R and | are assumed to be zero outside their boundaries

w R—l h R—l

SN Ir+is+4) - R(i, ) =Y I(r+i,s+j) R(,j)

=0 j=0 (i,j)ER
Note: Correlation is similar to linear convolution
Min value of d?,(r,s) corresponds to max value of (I ® R)(r,s)



Normalized Cross Correlation

Unfortunately, A term is not constant in most images

Thus cross correlation result varies with intensity changes in
image /
Normalized cross correlation considers energy in / and R

Cnlrs) = C(r,s) C(r,s)

B vV A(r,s) - B N VA(r, s)- VB

Z I(r+i,s+7)- R(4,7)
(i,J)ER

[ > 12(7"+z',s+j)]1/2' [ > RQ('é,j)}

(i,7)eR (2,7)eR

1/2

C, (r,s) is a local distance measure, is in [0,1] range
Cy (r,s) = 1 indicates maximum match
Cy (r,s) = 0 indicates images are very dissimilar



Correlation Coefficient oo

e Correlation coefficient: Use differences between / and R and

their average values
> (I(r+i,s+5)—I(r,5)) - (R(i,j)—R)

(i,j)ER

{ S (I(r+i,s+j)—fr,s)2] S (R(i,j)-R)*

(1,7)ER (2,7)€R

p. o~

2 _ 2
SR—K'O-R

where the average values are defined as

Cr(r,s) =

1/2 |: i|1/2

1 _ ]
L%S:E-.Z I(r+i,s+j) and R:K..Z R(%,7)
(i,J)ER (i,7)ER

e Kis number of pixels in reference image R

e C,(r,s) can be rewritten as S~ (Tt 549) - RG)) — K-y B

Cr(r,s) = (L)eR

o q1/2
[ Z I*(r+i,s4+j) — K-Ifﬂs] - SR
(i.7)ER
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CORRELATIONCOEFFICIENT (I, R)

I(u,v): search image of size w; x hr

R(1,7): reference image of size wr X hgr

Returns C(r,s) containing the values of the correlation coefficient
between I and R positioned at (r, s).

STEP 1-INITIALIZE:
K —wpr-hr
2R<—0, ERQ<—O
for:—0...(wr—1) do
for j —0...(hr—1) do
Xr — Xr —|-R(’i,j)
Xpo — Ypo + (R(i,j))2

R+« Yr/K > Eqn. (17.8)
SR<— AV4 ZRQ—K~R2 = ZRQ—Z%/K [>Eqn. (1710)

STEP 2—COMPUTE THE CORRELATION MAP:

C «— new map of size (wi—wr+1) X (hi—hr+1), C(r,s) € R

for r — 0...(wr—wgr) do > place R at position (r, s)
for s —0...(hi—hr) do

Compute correlation coefficient for position (r, s):
2] <—0, 212 <—0, 2134—0
fori—0...(wrg—1) do
for j —0...(hr—1) do

ar < I(r+i,s+7)

ar R('L:J)

X X1 +ar

Y e Xip+ad

Yir+— Yir +as-ar

Is— X1/K > Eqn. (17.8)
Clr,s) — Y —K-drs R Yir—X1-R

\fE]Q—K'f,?,S'SR 1/212_2?/K'5R

return C. > C(r,s) € [—1,1]

Correlation
Coefficient
Algorithm



000
1 class CorrCoeffMatcher { (X X ]
2 FloatProcessor I; //image 'Y X X
3 FloatProcessor R; // template Y X}
4 int wI, hI; // width/height of image [ )
5 int wR, hR; // width/height of template o
6 int K; // size of template
7
8 float meanR; // mean value of template (R)
9 float varR; // square root of template variance (cr)
10
11  public CorrCoeffMatcher ( // constructor method
12 FloatProcessor img, // search image (I) .
13 FloatProcessor ref) reference image (R
M efeene o (1 Correlation
15 I = img; o o
16 R = ref; C ff t j
17 wl = I.getWidth(); oe ICIen ava
18 hI = I.getHeight(); o
19  wR = R.getWidth(); I I t t
20 hR = R.getHeight (); mp ementation
21 K = wR * hR;
22
23 // compute the mean (R) and variance term (Sgr) of the template:
24 float sumR = 0; // Xr=> R(i,j)
25 float sumR2 = 0;  // Xro =Y. R*(4,7)
26 for (int j = 0; j < hR; j++) {
27 for (int i = 0; i < wR; i++) {
28 float aR = R.getf(i, j);
29 sumR += aR;
30 sumR2 += aR * aR;
31 ¥
32 }
33 meanR = sumR / K; // R=[> R(i,j)]/K
34 varR = // Sk =[> R*(,j) — K-R?|"/?
35 (float) Math.sqrt(sumR2 - K * meanR * meanR);
36}
37

38  // continued...



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

public FloatProcessor computeMatch() {
FloatProcessor C = new FloatProcessor (wlI-wR+1, hI-hR+1);
for (int r = 0; r <= wI-wR; r++) {
for (int s = 0; s <= hI-hR; s++) {
float d = getMatchValue(r,s);
C.eetf(r, &, d);
1y
tk

return C;

i

float getMatchValue(int r, int s) {
float sumI = 0; //X7i=> I(r+i,s+7)
float sumI2 = 0; // X2 =Y (I(r+i,s+j5))>
float sumIR = 0; // Xir=> I(r+i,s+7) -  R(z,7)

for (int j = 0; j < hR; j++) {
for (int i = 0; i < wR; i++) {
float al = I.getf(r+i, s+j);
float aR = R.getf(i, j);
suml += al;
sumlI2 += al *x al;
sumIR += al * aR;

}
}
float meanI = suml / K; /) I_m = /K
return (sumIR - K * meanl * meanR) /
((float)Math.sqrt (sumI2 - K * meanI * meanI) * varR);
+

70 } // end of class CorrCoeffMatcher

Correlation
Coefficient Java
Implementation



Examples and Discussion

e We now compare these distance metrics
e Original image I: Repetitive flower pattern

e Reference image R: one instance of repetitive pattern
extracted from /

(a) original image I (b) reference image R

e Now compute various distance measures for this / and R




Examples and Discussion

(c) sum of absolute differences (d) maximum difference (a) original image T (b) reference image R

e Sum of absolute differences: performs okay but affected by
global intensity changes

da(r,s)= Y (r+i,s+j)— R(,J)
(4,J)ER

e Maximum difference: Responds more to lighting intensity

changes than pattern similarity

da(r,s) = max [I(r+i,s+j) — R(i,])]
(i.)ER



Examples and Discussion 4+

Wyt

Al

(a) original image I (b) reference image R

<
M

(e) sum of squared distances (f) global cross correlation

e Sum of squared (euclidean) distances: performs okay but
affected by global intensity changes

dE(r,s):[ 3 (I(r+z’,s—|—j)—R(i,j))2]

(i.j)eR

1/2

e Global cross correlation: Local maxima at true template
position, but is dominated by high-intensity responses in

brighter image parts TR
g gep (I ® R)(r,s) = Z Z I(r+i,s+37) - R(%,j)

1=—00 J=—00



Examples and Discussion

’ ;
¢ ’ B 1
» P~ \
é -

b

/

P

A Al
(a) original image I (b) reference image R

e Normalized cross correlation: results similar to euclidean
distance (affected by global intensity changes)

> I(r+i,s+35) - R(i, )
(i,j)eR

[ 3 pevissn] " [ 3 mea] "

(i.7)eR (i.jleR

h

(g) normalized cross correlation (h) correlation coefficient

e Correlation coefficient: yields best results. Distinct peaks
produced for all 6 template instances, unaffected by lighting

Y (I(r+is+j)-R(i,5)) — K-IsR

Cr(r,s) = Laek

— q1/2
{ N Plrtistj) - K-Ifjs} . Sk
(iLf)ER



Effects of Changing Intensity sese

e To explore effects of globally changing intensity, raise intensiy
of reference image R by 50 units

e Distinct peaks disappear in Euclidean distance

e Correlation coefficient unchanged, robust measure in
realistic lighting conditions Original reference fmage: f

b (a) Euclidean distance (b) correlation coefficient

Modified reference image: R’ = R + 50

(a) original image I (b) reference image R

(c) Euclidean distance (d) correlation coefficient



Euclidean Distance under Global 13-
Intensity Changes

; e
b
’/f
/’//

R R+25

Distance function for Distance function with Distance function with
original template R intensity increased by intensity increased by
25 units 50 units

e Local peaks disappear as template intensity (and thus
distance) is increased



Shape of Template

e Template does not have to be rectangular

e Some applications use circular, elliptical or custom-shaped
templates

e Non-rectangular templates stored in rectangular array, but
pixels in template marked using a mask

e More generally, a weighted function can be applied to
template elements



Matching under Rotation and Scaling

e Simple Approach:
e Store multiple rotated and scaled versions of template
e Computationally prohibitive

e Alternate approaches:
e Matching in logarithmic-polar space (complicated!)

e Affine matching use local statistical features invariant
under affine image transformations (including rotation and
scaling)



Matching Binary Images

e Direct Comparison:
e Count the number of identical pixels in search image and template

e Small total difference when most pixels are same

e Problem: Small shift, rotation or distortion of image create
high distance

e Need a more tolerant measure

A B C D 0w W
E F 4 % vuwy
9 49 K L Y

(a) (b) (c)



The Distance Transform

e For every position (u,v) in the search image /, record dista
to closest foreground pixel

e So, for binary image

FG(I) ={p|1(p)
BG(I) ={p|I(p)

e Distance transform is defined as

1)
0}

D = min dist(p, p’
(p) o (p,p")
e Examples of distance measures are Euclidean distance

de(p,p) =lp -l = V(u—w)?+ (v—2)? eR*

e Or Manhattan distance

dy(p,p') =|lu—u'|+]v—2"| €Ny

nce



Distance Transform Example
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Chamfer Algorithm

e Efficient method to compute distance transform
e Similar to sequential region labeling

e Traverses image twice

First, starting at upper left corner of image, propagates distance values
downward in diagonal direction

Second traversal starts at bottom right, proceeds in opposite direction
(bottom to top)
e For each traversal, the following masks is used for
propagating distance values

L L L
Mo Mg TNy
L R
M* = mf X . M™ = . X mf

R ..R .. R
my Mz My



Chamfer Distance

e Specifically, for masks for Manhattan distance

2 1 2 Lo
ME=11 x - ME=1. x 1
e And masks for Euclidean distance
ﬂ 1 \/§ . .
ME=1]1 x - M=+ x 1

e Floating point-operations can be avoided using distance masks
with scaled integer values for Euclidean distance such as

4 3 4
Mg =13 x - Mg =] x 3
43 4



Chamfer Matching

e Uses distance transform for matching binary images

e Finds points of maximum agreement between binary search
image / and binary reference image R

e Accumulates values of distance transform as match score Q

e At each position, (r,s) of the template R, distance values to all
foreground pixels are accumulated
1
Qrys) = - > D(r+i,s+))

(i,j)EFG(R)
where K = | FG(R)| is number of foreground pixels in template R
e Zero Q score = maximum match
e lLarge Q score = large deviations

e Best match corresponds to global minimum of Q



000
0000
o o000
Chamfer Matchin oo
( X
o
1: CuHaMFERMATCH (I, R)
I: binary search image of size wr X hr
R: binary reference image of size wgr X hr
Returns a two-dimensional map of match scores.
STEP 1—INITIALIZE: < Compute distance transform D
2: D « DISTANCETRANSFORM([) > see Alg. 17.2 of image using Chamfer algorithm

w

K + number of foreground pixels in R
4: Q < new match map of size (wr—wr+1) X (hr—hr+1), Q(r,s) € R

Accumulate sum of distance values

STEP 2—COMPUTE THE MATCH SCORE: < _ _
5. for r « 0...(w;—wr) do > place R at (r, s) For all foreground pixels in template R
6: for s —0...(hj—hgr) do

Get match score for template placed at (r, s):

T q—0
8: fori«—0...(wr—1) do
9: for j «—0...(hgr—1) do
10: if R(i,7) =1 then © foreground pixel in template
11: g q+ D(r+i,s+j3) € Results stored in 2D match map D
12: Q(r,s) — q/K

13: return Q.




Comparing Direct Pixel comparison
and Chamfer Matching

e Chamfer match score Q much smoother than direct comparison
e Distinct peaks in places of high similarity

et comparison hamjer matehing
v W
x/RE
YR
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Di1STANCETRANSFORM (1)

I: binary image of size M x N.
Returns the distance transform of image I.

STEP 1—INITIALIZE:
D «— new distance map of size M x N, D(u,v) € R
for all image coordinates (u,v) do
if I(u,v) =1 then
D(u,v) < 0 > foreground pixel (zero distance)
else
D(u,v) « oo > background pixel (infinite distance)

STEP 2—L—R pass (using distance mask M* = m}):

forv—1,2,..., N—1do > top — bottom
for u —1,2,...,M—2 do > left — right
if D(u,v) > 0 then
di — mi + D(u—1,v)
dy — m& + D(u—1,v—1)
dsz — m% + D(u,v—1)
ds — m¥ + D(u+1,v—1)
D(u, ’U) — min(d1, dg,dg,d4)

STEP 3—R—L pass (using distance mask M = m[):
forv— N-2,...,1,0do > bottom — top
for u — M—-2,...,2,1do > right — left
if D(u,v) > 0 then
di — mi' + D(u+1,v)
da — m5 + D(u+1,v+1)
dz — m& + D(u,v+1)
dy — mi 4+ D(u—1,v+1)
D(u,v) « min(D(u,v),d1,d2,ds,ds)

return D.

Distance
Transform
using Chamfer
Algorithm



[
o [
o000
Original Manhattan distance FEuclid. dist. (approx.) ::.
o
Distance
Transform
using Chamfer
.‘ Algorithm
|
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Recall: Electromagnetic Spectrum and IP

e Images can be made from any form of EM radiation

Penetrates Earth's
' N N
Radiation Type Radio Microwave Infrared Visible Ultraviolet X-ray Gamma ray

Wavelength (m) 1072 107 0.5x107° 1078 0™ [V

10°
Approximate Scale = f _
of Wavelength = = ~§ .

Buildings Humans  Butterflies Needle Point Protozoans Molecules Atoms  Atomic Nuclei

10 108 102 10 10'° 108 10%
Temperature of
objects at which
this radiation is the )
most intense 1K 100 K 10.000 K 10,000,000 K
length emitted ’ 000,
wavelength emitte 972 °C 173 °C 9727 °C ~10,000,000 °C

From Wikipedia



Recall: Images from Different EM Radiation

e Radar imaging (radio waves)

e Magnetic Resonance Imaging (MRI) (Radio waves)
e Microwave imaging

e Infrared imaging

e Photographs

e Ultraviolet imaging telescopes

e

e X-rays and Computed tomography Non-visible

. .. Wavelengths
e Positron emission tomography (gamma rays) = Used for

oo
e Ultrasound (not EM waves) Medical imaging

—



Medical Imaging Example Technologies

e XRay

e Computerized tomography

e Mammogram

e Nuclear magnetic resonance

e Positron Emission Tomography

e Single Photon Emission Computerized Tomography
e Ultrasound imaging



XRay

e Imaging body internals using electromagnetic waves
of wavelength 0.01 to 10 nanometers




Computerized Tomography

e Tomography: Cross-sectional image formed from projections
e Example: XRay Computerized tomography of human brain
e Virtual slices allow human to see inside without cuttlng open




Ultrasound

e Uses sound waves undetectable by human ear
e Non-invasive imaging, used for imaging unborn babies

: ‘.' 11.08.1984 RAB4-8-D/OB Ml 1.1 Dr. Moroder ecofetale.com
" GA=12w3d 8.3cm/1.4/16Hz Tis 0.1 02.02.2012 12:41:36

Routine
Har-high

r
Gn 10
C6 /M7
P5 | E3
SRINS5

Z

-~

CRL 6.51cm
GA 12wéd 71.8%




Computer Vision

e Vision builds on Image processing
e Inverse problem to computer graphics
Vision and graphics
Images Vision Model
@ " Graphics @
Courtesy
Grauman Inverse problems: analysis and synthesis.

U of Texas




Why do we need Computer Vision?

e Explosion of visual content

e Let computers help humans with “easy” tasks

Visual data in 1963

L. G. Roberts, Machine Perception
of Three Dimensional Solids,
Ph.D. thesis, MIT Department of
Electrical Engineering, 1963.

Visual data in 2011
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Computer Vision

Classic CV task: Recognize objects in image

First step: Describe images using distinct features
(textures, colors, edges, etc)

Outputs of image processing = inputs for CV

Features and filters

Courtesy
Grauman U of
Texas

Transforming and
describing images;
textures, colors, edges
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Grouplng & fltt|ng :
Clustering,
segmentation,
fitting; what parts Courtesy
belong together? Grauman U of

Texas

Hough transform, etc



Recognizing objects
and categories,
learning techniques

Recognition and learning

. Courtesy
Grauman U of
Texas

# Margen



Digital Forensics

e Detecting when images have been tampered with
e Has been around for a long time

e Example: 1961 Grigoriy Nelyubov, one of astronauts removed
from image of Russian astronauts on moon for misbehavior




Computational Photography

e Traditional camera: only configurable settings

e Computational camera: More parts programmable
Programmable illumination: complex flash patterns
Programmable apertures, shutter, etc
Programmable image processing

e What’s possible?



Tone Mapping, Color Correction on
Camera

e Courtesy Fredo Durand MIT

After




Depth from Image using
programmable aperture

e Courtesy Bill Freeman, MIT




ReFocus badly focussed Images

Original image

e Courtesy Fredo
Durand MIT




Computational Photography

e What'’s possible?
e Deblurring: Take out motion blur artifacts

Blurred Photo 1
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Exam Overview

e Wednesday, April 30, 2014, in-class
e Midterm covered up to lecture 5 (Corner Detection)

e Final covers lecture 6 till today’s class (lecture 11)
e Can bring:
One page cheat-sheet, hand-written (not typed)
Calculator
o Will test:
Theoretical concepts
Mathematics
Algorithms
Programming

Imagel knowledge (program structure and some commands)



What am | Really Testing?

e Understanding of
concepts (NOT only programming)
programming (pseudocode/syntax)

e Test that:

you can plug in numbers by hand to check your
programs

you did the projects
you understand what you did in projects



General Advise

e Read your projects and refresh memory of what you did

e Read the slides: worst case — if you understand slides, you're
more than 50% prepared

e Focus on Mathematical results, concepts, algorithms

e Plug numbers: calculate by hand

e Try to predict subtle changes to algorithm.. What ifs?..

e Past exams: One sample final will be on website

e All lectures have references. Look at refs to focus reading
e Do all readings | asked you to do on your own



Grading Policy

e | try to give as much partial credit as possible

e In time constraints, laying out outline of solution
gets you healthy chunk of points

e Try to write something for each question

e Many questions will be easy, exponentially harder to
score higher in exam



Topics

e Curve Detection

e Morphological Filters

e Regions in Binary Images

e Color Images

e Introduction to Spectral Techniques
e Discrete Fourier Transform

e Geometrical Operations

e Comparing Images

e Future Directions
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