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Fourier Transform

e Main idea: Any periodic function can be decomposed into :
summation of sines and cosines

y = f(x)

Complex function > - /v\ - /
/\ i = sinx

Sine function 1 > P

y = zsin 2z

) . N\ N\ N P
Sine function 2 > N_" _ N N

y = zsindz

Sine function 3 —mm—>

—> | flz) =sinz + 3sin2z + zsindx

Complex function expressed
as sum of sines




Fourier Transform: Why?

e Mathematially easier to analyze effects of transmission
medium, noise, etc on simple sine functions, then add to get

effect on complex signal
/\'\ y= .;‘(.u:;r

S\ \J

/N
N \/

N\ N\ /"\l,
NN NN

y = =sindz

flz) =sinz + 3sin2x + =sindx




Fourier Transform: Some Observations

¥y = flz)
— /\’\VA /. Observation 2: Frequencies
\J \J of sines are multiples of
each other (called harmonics)
/\ y =sinz
\_/ \/, Frequency = 1x

y = gsin2r

N N N\ , =
N N N N Frequency = 2x

Observation 1: The —>
sines have different
frequencies (not same) y = Lsinds

\ Frequency = 4x

flx) =sinx 4 %Hillf»_].'.t' | %Hind:n

\

Observation 3: Different amounts of
different sines added together (e.g. 1/3, 1/5, etc)




Fourier Transform: Another Example

v=f [
Square wave
Approximation /
Using sines \/\/\/\/ \N\/\/

flz) =sinz + zsindx + zsindz + =sin7x

Observation 4: The sine terms go to infinity.
The more sines we add, the closer the
approximation of the original.



Who is Fourier?

e French mathematician and
physicist
e Lived 1768 -1830




Fourier Series Expansion

e If f(x) is periodic function of period 2T
e Fourier series expansion

nmx

f(x)=a, + Y% ,(a,cos— + b, sm—)

Where

ag = [ f(x)dx

a, = % ffo(x) cosnTﬂdx, n=123,..

b, = % f_TTf(x) sin%dx, n=123,..

e a _and b, called Fourier coefficients



Complex Form of Fourier Series Expansion

e Fourier series expansion of f(x)

fx) =ay + Xp-q1(ay COS% + b, sin%}

can be expressed in complex form as:

f(x) = Xp-—o Cnexp(cosm%c)dx

where

—Inmx

ca(x) = o= [ 1, f (x) exp(—)dx




Fourier Series of Periodic Functions

e (Almost) any periodic function g(x) with fundamental
frequency w, can be described as a sum of sinusoids

>0
g(x) = Z | A cos(kwoz) + By sin(kwoz)]
k=0 Cosines Sines
Infinite
sum of

e This infinite sum is called a Fourier Series

e Summed sines and cosines are multiples of the fundamental
frequency (harmonics)
e A,and B, called Fourier coefficients

e Not known initially but derived from original function g(x) during
Fourier analysis



Fourier Integral

e For non-periodic functions we can get similar results by
letting period T - oo similar ideas yield Fourier Integral
(integration of densely packed sines and cosines

g(z) = / A, cos(wz) + B, sin(wzx) dw
0

where coefficients can be found as

Ay = Alw) = 1 /_OO g(x) - cos(wzx) dx

s

B, = B(w) = l/ g(x) - sin(wz) dx

™ J_—




Fourier Transform

Fourier Transform: Transition of function g(x) to its Fourier
spectrum G(w)

G(w) = \/% /_O:O g(z) - [cos(wm) —1- sin(wx)} dz

g(z) - e da.

vl

Inverse Fourier Transform: Reconstruction of original
function g(x) from its Fourier spectrum G(w)

g(x) = % f_o:o G(w) - [cos(w:n) +1i- sin(wa:)} dw

1 e |
= —— G(w) - " dw.
%/_m ()

G(w) + g(w) called Fourier transform pair




1D Discrete Fourier Transform

e Image is a discrete 2D function!!

e For discrete functions we need
only finite number of functions

e For example, consider the discrete
seqguence

i, 1, 1, 1, -1, -1, -1, -1

e Above is discrete approximation
to square wave

e Can use Fourier transform to
express as sum of 2 sine functions




Definition of 1D DFT

e Suppose

f=1fo.f1,f2, -, fn1]
is a sequence of length N

Compare with complex form of coefficients

ea(0) = = [T FO0) exp(TE)dx

where —inmx

N —1

o b ey [t

e Interpretation: Basis functions completes x cycles over distance N
e Similar to Fourier series expansion
e Instead of integral, we now have a finite sum
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Inverse 1D DFT °

e Formula for inverse

DFT equation
N TU 1 Al TU
Ty = TXE} exXp IQW@N] F, F, = ¥ 1; exp [m‘N] fa

e Compared to DFT equation,
e The inverse has no scaling factor 1/N
e The signinside the square bracket has been changed to +ve



Fast Fourier Transform (FFT)

e Many ways to compute DFT quickly

e Fast Fourier Transform (FFT) algorithm is one such
way

e One FFT computation method
e Divides original vector into 2

e Calculates FFT of each half recursively

e Merges results



FFT Computation Time Savings

e Direct computation takes time: 2™ multiplications
e FFT method takes: n2™ multiplications
e Time savings: 2™ /n

2" | Direct arithmetic | FFT | Increase in speed

4 16 8 2.0

8 84 24 2.67
16 256 64 4.0
32 1024 160 6.4

64 4096 384 10.67
128 16384 896 18.3
256 65536 2048 32.0
512 262144 4608 56.9
1024 1048576 10240 | 102.4




2D DFT 3

e Thus if the matrix F is the Fourier Transform of f we can write

= F(f)

e The original matrix f is the Inverse Fourier Transform of F

f=FUF)

e \We have seen that a 1D function can be written as a sum of
sines and cosines

e Image can be thought of as 2D function f that can be
expressed as a sum of a sines and cosines along 2 dimensions



2D Fourier Transform :

e Can be expressed as weighted sum of sines and cosines

€i2w(%+”ﬁ) _ ei(wmu—l—wn'u)
= COS N M N 1 flﬂ 70 M N

CMA (y, v) SMN (4, v)

m,n m,n

A >y o

e m specifies how many cycles basis function performs over
distance of M units

e n specifies how many cycles basis function performs over
distance of N units



2D Fourier Transform

e For M x N matrix, forward and inverse fourier transforms can

be written

M—1 N—1
F(u,v) = Z Z f(:}:,y)exp[ QWZ(E —|—?$)]

=0 y=0
M—1N-—1

TU  Yv
F( 2
ZZ 'u'uexplm(MJrN

u=—_0 v=

f(z,y)

where
e xindices go from 0... M — 1 (x cycles over distance M)
e yindices gofrom0... N—1 (y cycles over distance N)

)]
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2D Fourier Transform: § e
Corrugation of Functions .

e Previous image just summed cosines

e Essentially, 2D Fourier Transform rewrites the original matrix
by summing sines and cosines in 2 direction = corrugations

Corrugations result when sines and cosines are summed in 2 directions



Properties of 2D Fourier Transform

e All properties of 1D Fourier transform apply + additional
properties

e Similarity: Forward and inverse transforms are similar except
1. scale factor 1/MN in inverse transform

2. Negative sign in exponent of forward transform

M—1 N—1

Pluv) = 3 > f(z.y)exp [63”' (ﬂ+%)]

z=0 y=0

M—1N-1 oy
F( 2mi | — + ° .
ZZ ﬂwe}cp[m(MJrN)]

f(z,y)

u=—_0 v=



Properties of 2D Fourier Transform

Fluv) = S 3 flay)exp

=0 y=0
M—1N-—I1
flz,y) = —— Z Z F(u,v)exp [ :
u=0 v= ’

e DFT as spatial filter: These values are just basis functions (are
independent of f and F)

fTu  yv
exp [iQm (E + F)]

M—1 N-—1 [

e Can be computed in advance, put into formulas later

e Implies each value F(u,v) obtained by multiplying every value of f(x,y)
by a fixed value, then adding up all results (similar to a filter!)

e DFT can be considered a linear spatial filter as big as the image



Separability

e Notice that Fourier transform “filter elements” can be
expressed as products

[2 , (:L"U. N yw)] [2 ,.’L“h‘.] [2 ,y?;]
exp |2me | 2o N CXp |2mi— - | eXD |27 N

2D DFT 1D DFT (row) 1D DFT (column)

e Formula above can be broken down into simpler formulas for
1D DFT

M—1

Fu) = Zo f(z)exp [—Z’N’iﬁ] ,

1 N TU
flx) = I uz;) F(u)exp [27?»5?5]



Properties: Separabilty of 2D DFT

e Using their separability property, can use 1D DFTs to calculate
rows then columns of 2D Fourier Transform

(a) Original image (b) DFT of each row of (a) (¢) DFT of each column of (b)



Implementation of 2D DFT

e Can use separability to implement 2D DFT as sequence of 1D
DFTs on rows and columns

1: SEPARABLE 2D-DFT (g) >g(u,v) €eC,0<u< M, 0<v< N
2: for v—0...N-1do
3: Let g(-,v) be the vth row vector of g:

Replace g(-,v) by DFT(g(:,v))
for u — 0... M—1 do
5: Let g(u,-) be the uth column vector of g:
Replace g(u,-) by DFT(g(u,-))
Remark: g(u,v) = G(u,v) € C now contains the discrete 2D spec-
trum.
6: return g

>




Properties of 2D DFT

e Linearity: DFT of a sum is equal to sum (or multiplication)lof

the individual DFT's

F(f+g9) = F()+F)
F(kf) = EF(f) «isascalar

e Useful property for dealing with degradations that can be

expressed as a sum (e.g. noise)

d=f+n

Where fis original image, n is the noise, d is degraded image
e We can find fourier transform as:

F(d) =F(f)+ F(n)

e Noise can be removed/reduced by modifying transform of n



Convolution using DFT

e DFT provides alternate method to do convolution of image

with spatial filter S

1. Pad S to make it same size as M, yielding §’

2. Form DFTs of both M and §’

3. Multiply M and S’ element by element

F(M)-F(S"
1. Take inverse transform of result
FUF(M)-F(S")
e Essentially
M xS =F Y (F(M)-F(S))

Or equivalently the convolution M * S
F(Mx*S)=F(M)-F(S



Convolution using DFT

e Large speedupsif Sis large
e Example: M=512x512,5=32x32

e Direct computation:
322 = 1024 multiplications for each pixel

Total multiplications for entire image =512 x 512 x 1024 = 268,435,456
multiplications

e Using DFT:
Each row requires 4608 multiplications
Multiplications for rows = 4608 x 512 = 2,359,296 multiplications
Repeat for columns, DFT of image = 4718592 multiplications
Need same for DFT of filter and for inverse DFT.
Also need 512 x 512 multiplications for product of 2 transforms
Total multiplications =4718592 x 3 + 262144 = 14,417,920



DC Component

e Recall that:

M—1N-1
Fu,v) Z Zf T, H{[J|i 271 (%+%H

=0 y=0

e The value F(0,0) of the DFT is called the dc coefficient
e Ifweputu=v=0,then

M—-1N-—1 M—-1N-—1

F(0,0) ZZfru:xpﬂ ZZfr?;

=0 y=0 r=0 y=0

e Essentially F(0,0) is the sum of all terms in the original matrix
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Centering DFT Spectrum .
e F(0,0) at top left corner
e For display, convenient to have DC component in center
e Just swap four quadrants of Fourier transform
A D & B
i Swap 4 quadrants to
. 57| - . P center DC component
(a) (b)

DFT spectrum after
centering

i
14\3"-‘@!
‘{l‘ Nt ‘\‘s\‘?"\'
b

ﬁ\ s m;




Centering DFT Spectrum :

: - o b) (C

Non-centered Centered

Original Image
Spectrum Spectrum



Conjugate Symmetry

e DFT shows conjugate symmetry
e Half of the transform is mirror image of conjugate of other half
e Implication: information is contained in only half of a transform
e Other half is redundant

a a "

b™ BT d” A*

b A d B




Conjugate Symmetry

e Thus, if we put u =-u, and v = -v into the DFT equation

M—1N-1

=0 y=0 1V N
Then
.7:(?5: ?J) = F~ (_u + pﬂf? —v + *?JV)
for any integers p and g a -

b A d B




Displaying Transforms :

e As elements are complex numbers, we can view magnitudes
[F'(u,v)| directly

e Displaying magnitudes of Fourier transforms called spectrum
of the transform

e Problem: DC component much larger than other values
e Displays white dot in middle surrounded by black

e So stretch transform values by displaying log of transform

log(1 + |F(u,v)|)



Examples of DFTs

e Suppose we have as input a constant image of all 1’s, f(x,y) = 1

e The DFT yields just a DC component, 0 everywhere else
e In this example, DC component is sum of all elements = 64

64

o O O O O O O
O O O O O O O O
O O O O O O O O

O O O O © O O O

O O O O O O O O

O O O O © O O O

O O O O © O O O

O O O O O O O O



DFT of Image

e Consider DFT of image with single edge
e For display, DC component shifted to center

e Log of magnitudes of Fourier Transform displayed

Image

DFT



DFT Example: A Box

Box DFT



DFT Example: Rotated Box

Rotated Box DFT



DFT Example: A Circle

e Note: Ringing caused by sharp cutoff of circle
e Ringing does not occur if circle cutoff is gentle

DFT

Circle



DFT Computation: Repeated Image

DFT computation assumes image repeated horizontally and
vertically

Large intensity transition at edges = vertical and horizontal line in
middle of spectrum after shifting

Effects of sharp transitions affects many pixels




Windowing

e Can multiply image by windowing function w(u,v) before DFT to
reduce sharp transitions between ends of repeated images

e Ideally, causes image to drop off towards ends, reducing
transitions




Definitions:
o= =Rl n= SR SRl ne =V
1 for0<ry, <1
Elliptical wlu,v) = = Tww =
window: 0 otherwise
7TE v
Gaussian w(u,v) = e( 307 ), c=03...04
window:
Super-Gaussian w(u,v) e( R ), n==6 k=0.3...04
window:
cos(Zry) -cos(Zry) for 0 < ry,ry <1
Cosine” w(u,v) = { (574) (57e) - -
window: 0 otherwise
1—7rye for0<r,, <1
Bartlett w(u,v) = e _'T T
window: 0 otherwise
. 0.5 cos(mry,, +1) for0<r, ., <1
Hanning w(u,v) = )
window: 0 otherwise
1—6rs, +6r,, for0<ry, <05
Parzen wu,v) =19 2- (1 —7r4.)° for 0.5 <7y <1
window: 0 otherwise

Some Proposed
Windowing
Functions
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log |[W (m,n)]| o) w(up log |G(m,n)*W (m,n)|

(a) square window

(b) cosine® window
(c) Bartlett window

(d) Hanning window

Application of
Windowing
Functions

(e) Parzen window

(f) Gaussian window




Filtering in Frequency Domain

e one reason for using Fourier transform in image processing is
due to convolution theorem

e Spatial convolution can be performed by element-wise
multiplication of the Fourier transform by suitable “filter
matrix”



Ideal Low Pass Filtering

e Low pass filter: Keep frequencies below a certain frequency

e Low pass filtering causes blurring

e After DFT, DC components and low frequency components
are towards center

e May specify frequency cutoff as circle c




Ideal Low Pass Filtering

e Multiply Image Fourier Transform F by some filter matrix m

(z.9) 1 if (z,y) is closer to the center than some value D,
m(z,y) = . .
Y 0 if (z,y) is further from the center than D.




Ideal Low Pass Filtering

e Low pass filtered image is inverse Fourier Transform of
product of Fand m

F~YF-m)

e Example: Consider the following image and its DFT

DFT




Ideal Low Pass Filtering

Applying
low pass filter
to DFT

Cutoff D = 15

Image after
inversion

low pass filter
Cutoff D=5

low pass filter
Cutoff D= 30

Note: Sharp filter
Cutoff causes
ringing




Ideal High Pass Filtering

e Opposite of low pass filtering: eliminate center (low
frequency values), keeping others

e High pass filtering causes image sharpening

e If we use circle as cutoff again, size affects results

Large cutoff = More information removed

§ =

]

DFT of Image after

_ € al Resulting image
high pass Filtering after inverse DFT




Ideal High Pass Filtering: Effect of Cutoffs

Low cutoff
frequency removes
Only few lowest
frequencies

High pass filtering
of DFT with filter
Cutoff D=5

High cutoff
frequency removes
many frequencies,

High pass filtering
of DFT with filter - .
Cutoff D =30 . . leaving only edges




After histogram
equalisation
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Butterworth Filtering

Sharp cutoff leads to ringing

To avoid ringing, can use circle with more gentle cutoff slope
Butterworth filters have more gentle cutoff slopes

ldeal low pass filter (@)

N 1 ifzx<D 1

flz) = { 0 ifz>D
D

Butterworth e .
low pass filter 1 n=2 1 h=4

— \

xr) =
A (z/D)>" . 5
D

n called order of the filter, controls sharpness of cutoff



Butterworth High Pass Filtering

e Ideal high pass filter f(x)

1 ifz>D :
f(ﬂ‘)_{n ifz <D |

e Butterworth high (@)

pass filter X

o) = — 2 /

1+ (D/)x)*n D




Low Pass Butterworth Filtering

e Low pass filtering removes high frequencies, blurs image
e Gentler cutoff eliminates ringing artifact

DFT of Image after low Resulting image
pass Butterworth filtering after inverse DFT




High Pass Butterworth Filtering

DFT of Image after high Resu!ting image
pass Butterworth filtering after inverse DFT



Gaussian Filtering

e Gaussian filters can be applied in frequency domain
e Same steps

e Create gaussian filter
e Multiply (DFT of image) by (gaussian filter)
e Invertresult

e Note: Fourier transform of gaussian is also a gaussian,

e Just apply gaussian multiply directly (no need to find Fourier
transform)



~ I8

(a) o — 10 b) Resulting image

_ Frequency
Domain Low Pass
Gaussian Filtering

(d) Resulting image



Lowpass Filtering Examples

A low pass Gaussian filter can be used to connect
broken text
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Lowpass Filtering Examples

Different lowpass Gaussian filters used to remove
blemishes in a photograph
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Frequency Domain High Pass Gaussian | g2
Filtering

(a) Using o = 10 (b) Using o = 30



Frequency Domain
Removal of Periodic Noise

e Recall: periodic noise could not be removed in spatial domain

e Periodic noise can be removed in frequency domain
e Periodic noise shows up as spikes away from origin in DFT
e Higher frequency noise = further away from origin

v 'y 7 / // { /'/::' ;’H,f'r. .. ;

Image with periodic Noise DFT of Image



Frequency Domain
Removal of Periodic Noise

e 2 ways to remove periodic noise in frequency domain
e Notch Filter
e Bandreject filter

e Notch filter: Set rows, columns of DFT corresponding to noise =0
e Removes much of the periodic noise

Result after notch filter
Notch Filter applied then inverted



Frequency Domain Removal of Periodic
Noise: Band Reject Filter

e Create filter with O’s at radius of noise from center, 1 elsew
e Apply filter to DFT

Band Reject Filter Result after band reject filter
applied then inverted




2D Fourier Transform Examples: Scaling

e Stretching image => Spectrum contracts
e And vice versa

(a) (b) (c)
(d) (e) (f)




2D Fourier Transform Examples: Periodic

Patterns

e Repetitive periodic patterns appear as distinct peaks at
corresponding positions in spectrum

()

Enlarging image ( c) causes
Spectrum to contract (f)




2D Fourier Transform Examples: Rotation

e Rotating image => Rotates spectra by same angle/amoun




2D Fourier Transform Examples: Oriented,
elongated Structures

e Man-made elongated regular patterns in image => appea
dominant in spectrum

r



2D Fourier Transform Examples: Natural
Images

e Repetitions in natural scenes => less dominant than man-
made ones, less obvious in spectra

B




2D Fourier Transform Examples: Natural
Images

e Natural scenes with repetitive patterns but no dominant
orientation => do not stand out in spectra




2D Fourier Transform Examples: Printed
Patterns

e Regular diagonal patterns caused by printing => Clearly
visible/removable in frequency spectrum.
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