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Recall: Sequential Region Labeling

e 2 steps:
Preliminary labeling of image regions

Resolving cases where more than one label occurs (been previously
labeled)

e Even though algorithm is complex (especially 2" stage), it is
preferred because it has lower memory requirements

e First step: preliminary labeling

e Check following pixels depending on if we consider 4-
connected or 8-connected neighbors

No No N3 Ny
Ni(u,v) = Ny X or  MNg(u,v) = Ny X
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e First foreground pixel [1] is found

e All neighbors in N(u,v) are background pixels [0]

e Assign pixel the first label [2]

new label (2)
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e In next step, exactly on neighbor in N(u,v) marked with label 2,

so propagate this value [2]

neighbor label is propagated

exactly one neighbor label
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Recall: Preliminary Labeling: Propagating
Labels

e Continue checking pixels as above

e At step below, there are two neighboring pixels and they have
differing labels (2 and 5)

e One of these values is propagated (2 in this case), and collision
<2,5> is registered

(d) two. different neighbor labels one of th.e labels (2) is propagated
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Recall: Preliminary Labeling: Label
Collisions

e At the end of labeling step
e All foreground pixels have been provisionally marked
e All collisions between labels (red circles) have been registered
e Labels and collisions correspond to edges of undirected graph
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I1ISIONS

Resolving Colli

Recall

e Once all distinct labels within single region have been

collected, assign labels of all pixels in region to be the same

(e.g. assign all labels to have the smallest original label. E.g. [2]
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Region Labeling: Result
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Area Bounding Box Center

Label || (pizels) | (left, top, right, bottom) (TeyyYe)
2 14978 (887, 21, 1144, 399) (1049.7, 242.8)
3 36156 | ( 40, 37, 438, 419) | ( 261.9, 209.5)
4 25004 | (464, 126, 841, 382) | ( 680.6, 240.6)
5 2024 | (387, 281, 442, 341) | ( 414.2, 310.6)
6 2203 | (244, 367, 342, 506) | ( 294.4, 439.0)
7 4394 | (406, 400, 507, 512) | ( 454.1, 457.3)
8 29777 | (510, 416, 883, 765) | ( 704.9, 583.9)
9 20724 (833, 497, 1168, 759) (1016.0, 624.1)
10 16566 ( 82, 558, 411, 821) ( 208.7, 661.6)




Region Contours

e After finding regions, find region contours (outlines)
e Sounds easy, but it is non-triviall

e Morphological operations can be used to find boundary
pixels (interior and exterior)

e We want ordered sequence of pixels that traces
boundaries



Inner vs Outer Contours

e QOuter contour:
lies along outside of foreground (dark) region
Only 1 exists

e Inner contour:
Due to holes, there may be more than 1 inner contour

s Outer Contour

B e Inner Contour




Inner vs Outer Contours

Complicated by regions connected by thin line 1 pixel wide

Contour may run through same pixel multiple times, from
different directions

Implication: we cannot use return to a starting pixel as
condition to terminate contour

Region with 1 pixel will also have contour
|
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General Strategy for Finding Contours | ¢3¢

e Two steps:
e Find all connected regions in image

e For each region proceed around it starting from pixel selected from its
border

e Works well, but implementation requires good record
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Combining Region Labeling and sece
Contour Finding :

e Identifies and labels regions

N |
e Traces inner and outer contours NN\ /[ B
e Step 1 (fig (a)): @ %
e Image is traversed from top left to
/
N

lower right.

e Ifthere’s a transition from

foreground pixel to previously

(a)
unmarked foreground pixel (A), A lies
on outer edge of a new region ¥ \\ //E
e Anew label is allocated and starting @
from point A, pixels on the edge along
yd

outer contour are visited and labeled
until A is reached again (fig a)

e Background pixels directly bordering (c) ()
region are labeled -1



Combining Region Labeling and
Contour Finding

o Step 2 (fig (b) & (c)):

If there’s transition from
foreground pixel B to unmarked
background pixel, B lies on inner
contour.

Starting from point B inner
contour is traversed. Pixels along
inner contour are found and
labeled with label from
surrounding region (fig ( ¢ )) till
arriving back at B

e A
>0 \
i
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(c)



Combining Region Labeling and
Contour Finding

Step 3 (fig (d)):

When foreground pixel does not
lie on contour (not an edge), this
means neighboring pixel to left
has already been labeled (fig
11.9(d)) and this label is
propagated to current pixel
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11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

CoMBINEDCONTOURLABELING ()

I: binary image

Returns a set of contours and a label map (labeled image).
Create an empty set of contours: C «— {}
Create a label map LM of the same size as I and initialize:
for all (u,v) do

LM (u,v) < 0 > label map LM

R+0 > region counter R

Scan the image from left to right and top to bottom:
forv—0...N—-1do
Ly 0 > current label Ly
foru < 0...M—1do
if I(u,v) is a foreground pixel then
if (Li # 0) then > continue existing region
LM (u,v) < L
else
Ly — LM (u,v)
if (Lr =0) then > hit new outer contour
R—R+1
Lk — R
xs — (u,v)
Couter «— TRACECONTOUR(xs,0, Ly, I, LM)

C «— CU{couter} > collect new contour
LM (u,v) < Ly
else > I(u,v) is a background pixel
if (L # 0) then
if (LM (u,v) = 0) then > hit new inner contour

xs — (u—1,v)
Cinner < TRACECONTOUR(®s, 1, Ly, I, LM)
C «— CU{Cinner} > collect new contour
L0
return (C, LM). > return the set of contours and the label map

continued in Alg. 11.4 o>

Complete code in
appendix D of text

Algorithm for
Combining Region
Labeling and
Contour Finding



1: TrRAcCeCONTOUR(zxs,ds, Li, I, LM)
xg: start position, ds: initial search direction,
L.: label for this contour
I: original image, LM: label map.
Traces and returns the contour starting at xs.
2: (x7, dpext) +— FINDNEXTPOINT(25,ds,I, LM)
3: c— [z7] > create a contour starting with
4: Tp — T > previous position x, = (up,vp)
5: T — xT > current position . = (ue, ve)
6: done «— (xs = x7) > isolated pixel?
7 while (—done) do
8: LM (ue,ve) + Le
9: dsearch — (dnext + 6) mod 8
10: (Zn, dnext) — FINDNEXTPOINT (., dscarch, I, LM)
11: Tp — Te
12: Le < Tn
13: done «— (xp =xs N = TT) > back at start point?
14: if (—done) then
15: APPEND(e, 1) > add point ,, to contour ¢
16: return c. > return this contour
17: FINDNEXTPOINT(Z(,d, I, LM)
x.: start point, d: search direction,
I: original image, LM : label map.
18: for i —0...6do > search in 7 directions
19: ' — x.+ DELTA(d) >’ = (u,v")
20: if I(u',v") is a background pixel then
21: LM (u',v") « —1 > mark background as visited (—1)
22: d <+ (d+1) mod8
23: else > found a nonbackground pixel at z’
24: return (z',d)
25: return (z.,d). > found no next point, return start point
d 0O 1 2 3 4 5 6 7
26: DerLra(d) = (Az,Ay), with |[Az| 1 1 0-1-1-1 0 1
Ayl 0 1 1 1 0-1-1-1

Algorithm for
Combining Region
Labeling and
Contour Finding



Result of Combining Region Labeling and
Contour Finding

e Outer contours shown as black polygon lines running through
centers of contour pixels

e |Inner contours drawn in white

e Contours of single pixel regions marked by small circles filled
with corresponding color




Result of Combining Region Labeling and
Contour Finding (Larger section)

e QOuter contours marked in black
e |Inner contours drawn in white




Representing Image Regions

e Matrix is useful for storing images

e Matrix representation requires same (large) memory allocation
even if image content is small (e.g. 2 lines)

e Regions in image can be represented using logical mask
e Area within region assigned value true

e Area outside region assigned value false

e Called bitmap since boolean values can be represented by 1 bit

(a) (b) (c)

Original Image Logical (big) mask Masked Image



Run Length Encoding (RLE)

]
loN

e Sequences of adjacent foreground pixels can be represent
compactly as runs

e Run: Maximal length sequence of adjacent pixels of same
type within row or column

e Runs of arbitrary length can be encoded as:

Run; = (rowi, column;, Iengthi)
\ J
|

Starting pixel

Bitmap RLE
0{1]2[3[|4|5[6[7]|8

(row, column, length)

0

; X | X | X | X | X | X (1,2, 6)
Example 3 x| x| x| x — éZ’f’ii

EEEEREEEE 45,9

5 (5,0,9)




Run Length Encoding (RLE)

e RLE used as simple lossless compression method
e Forms foundation for fax transmission
e Used in several codecs including TIFF, GIF and JPEG




Chain Codes

Region representation using contour encoding

Contour beginning at start point x; represented by sequence
of directional changes it describes on a discrete raster image

Essentially, each possible direction is assigned a number
Length of resulting path approximates true length of contour
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Differential Chain Codes

e Contour R is defined as sequence of points

cr = [xo, ®1,...xp—1] With @; = (us, v;)
e To encode region R,

e Store starting point

e Instead of storing sequence of point coordinates, store relative
direction (8 possibilities) each point lies away from the previous point.
i.e. create elements of its chain code sequence <, = [c),¢},...c\; 4] by

C'/i = CODE(AU,L', AUI)
Where

Uil — Uiy Vi1 —U; for O§Z<ﬂf[—1
(AUE,A’UE) _ {( +1 +1 )

(uo—ui, vo—1v;) for i = M—1, 3 0.1 1
-1,1 1,1

e Code is defined by table below

Au 1 1 0 -1 -1 -1 0 1 4 -1,0< \> 1,0 0
Av o 1 1 1 0 -1 -1 —1 /
0

.- 1,-1
CoDE(Au, Av 1 2 3 4 5 6 7T L1 o
5 )

6 7




Differential Chain Code

e Comparison of 2 different absolute chain codes is difficult

e Differential Chain Code: Encode change in direction along
discrete contour

e An absolute element chain code ¢z = [, ¢1;--- -1l can be
converted element by element to differential chain code with
elements given by

1 (C;+1_c;) mod 3 for 0 <1< M—1
(¢ — ¢;) mod 8 for i = M—1



Differential Chain Code Example

e Differential Chain Code for the following figure is:

8-Chain Code
54544546767 . ..222
length = 18 + 5v/2 2 25

¢ =[5,4,5,4,4,5,4,

6,

16,7,

¢y =1[7,1,7,0,1,7,2

1,

7, 1,1,

Example: 7-6=1

..2,2,2]
...0,0,3]




Shape Numbers

e Digits of differential chain code frequently interpreted as
number to base b

b = 4 for 4-connected contour
b = 8 for 8-connected contour

VAL(R) =cff 0" + ¢ bt + ..+ e
M-—1
_ Z cfi’ . bi
1=0
e We can shift the chain code sequence cyclically
e Example: shifting chain code cyclically by 2 positions gives

ch=101,3,2,...9,3,7,4]
chi>2=17,4,0,1,3,2,...9,3]



Shape Number

e We can shift the sequence cyclically until the numeric value is
maximized denoted as

k — are max VAL(eL >k
max bOSk<M ( R )

e The resulting code is called the shape number

e To compare 2 differential codes, they must have same
starting point

e Shape number does not have this requirement

e In general chain codes are not useful for determining
similarity between regions because
Arbitrary rotations have too great of an impact on them
Cannot handle scaling or distortions



[ ] [ ] .
Fourier Descriptors :

e Interprete 2D contour as a sequence of values [z,, z,, ....z,,; ] In
complex plane, where

ZZ:(UZ—FI’U@)EC

e Coefficients of the 1D Fourier spectrum of this function provide
a shape description of the contour in frequency space



Properties of Binary Regions

e Human descriptions of regions based on their properties:

“a red rectangle on a blue background”
“sunset at the beach with two dogs playing in the sand”

e Not yet possible for computers to generate such descriptors

e Alternatively, computers can calculate mathematical
properties of image or region to use for classification

e Using features to classify images is fundamental part of
pattern recognition



Types of Features

e Shape features

e Geometric features

e Statistical shape properties

e Moment-Based Geometrical Properties

e Topological Properties




Shape Features :

e Feature: numerical or qualitative value computable from
values and coordinates of pixels in region

e Example feature: One of simplest features is size which is the
total number of pixels in region

e Feature vector:
e Combination of different features

e Used as a sort of “signature” for the region for classification or
comparison

e Desirable properties of features

e Simple to calculate
e Not affected by translation, rotations and scaling



Geometric Features

Region R of binary image = 2D distribution of foreground
points within discrete plane

Perimeter: Length of region’s outer contour
Note that the region R must be connected

For 4-neighborhood, measured length of contour is larger
than it’s actual length

. . . /A Y A J
Good approximation for 8-connected chain code €= = [c0: €1, a1
M-1
Perimeter(R) = Z length(c;)
1=0

_ 1 for ¢=0,2,4,6
with length(c) = 5 o 1357

Formula leads to overestimation. Good fix: multiply by 0.95

P(R) ~ Perimeter o (R) = 0.95 - Perimeter(R)



Geometric Features

e Area: Simply count image pixels that make up region
A(R) =[R| =
e Area of connected region (without holes): that is defined by

M coordinate points can be estimated using the Gaussian
area formula for polygons as

M —

1
5 Z "V(i+1) mod M — U(i+1) mod M ° ’U,,;)
i=0



Geometric Features

Q

Compactness and Roundness: is the relationship betweer
region’s area and its perimeter. i.e. A/ P?

Invariant to translation, rotation and scaling.
When applied to circular region ratio has value of 1/ 4n

Thus, normalizing against filled circle creates feature sensitive
to roundness or circularity

Circularity(R) = 4x -

1.001 0.672 0.086



Geometric Features

e Bounding Box: mininimal axis-parallel rectangle that encloses all
points in R

BoundingBox(R) — <umina Umaxs Umin;, Umax)

e Convex Hull: Smallest polygon that fits all pointsin R

e Convexity: relationship between length of convex hull and perimeter of
the region

e Density: the ratio between area of the region and area of the convex hull

———————————————————————————————————

(a) (b)
Bounding box Convex Hull



Statistical Shape Properties

e View points as being statistically distributed in 2D space
e Can be applied to regions that are not connected

e Central moments measure characteristic properties with
respect to its midpoint or centroid

e Centroid: of a binary region is the arithmetic mean of all (x,y)
coordinates in the region

1 1
:E:—-Zu and Y= —" v
|R|(u*v)€7?, |
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Statistical Shape Properties :
e Moments: Centroid is only specific case of more general
concept of moment
e Ordinary moment of the order p,q for a discrete (image)
function I(u,v) is
Mo = 3 ) e T e moment e

(u,v)ER

e Area of a binary region is zero-order moment

AR Zl— Zuv—moo

(u,w)ER (u,w)ER



Statistical Shape Properties

e Similarly centroid can be expressed as

e Moments are concrete physical properties of a region



Review: Moments of Statistical Data

e Moments used to quantify how skewed data is

e Example: Given the numbers, 3, 2,3.7,5, 2.7 and 3
the relative symmetry or skewness can be
determined by calculating moments

e Third moment formula: For each point X, calculate:

Y.(X — Average)?
ms3 = N

e We can calculate 2nd 3rd 4th etc moments



Statistical Shape Properties

e Central moments:

e Use theregion’s centroid as reference to calculate translation-invariant
region features

e Shifts the origin to the region’s centroid (Note: ordinary moment does not)

e Order p, g central moments can be calculated as:

e For binary image with /{u,v) =1

fpg(R) = Z (u—2)" (v—7)*

(u,v)ER



Statistical Shape Properties

e Values of central moments depends on:

e Distances of all region points to centroid
e Absolute size of the region

e Size-invariant features can be obtained by scaling central
moments uniformly by some factor s

g(P+q+2)

e Normalized central moments:

1 ) (p+q+2)/2

/_LPQ(R) = Hpq - (/«LOO(R)

for(p+q)>=2




000
000

1 import ij.process.ImageProcessor; 'Y XK

’ e0o

3 public class Moments { P

4 static final int BACKGROUND = O; P

5

6 static double moment (ImageProcessor ip,int p,int q) {

7 double Mpq = 0.0;

8 for (int v = 0; v < ip.getHeight(); v++) {

9 for (int u = 0; u < ip.getWidth(); u++) {

10 if (ip.getPixel(u,v) != BACKGROUND) {

11 Mpq += Math.pow(u, p) * Math.pow(v, q);

12 }

13 }

14 }

15 return Mpq;

16}

17 static double centralMoment (ImageProcessor ip,int p,int q)

S Code to
19 double m00 = moment(ip, 0, 0); // region area

20 double xCtr = moment(ip, 1, 0) / m00;

21 double yCtr = moment(ip, 0, 1) / m00;

s dowsle oipa - 0.0; Com pute
23 for (int v = 0; v < ip.getHeight(); v++) {

24 for (int u = 0; u < ip.getWidth(); u++) {

25 if (ip.getPixel(u,v) != BACKGROUND) { M
2 citpa +- oments
27 Math.pow(u - xCtr, p) *

28 Math.pow(v - yCtr, q);

29 }

30 }

31 }

32 return cMpq;

3 }

34 static double normalCentralMoment

35 (ImageProcessor ip,int p,int q) {

36 double m00 = moment(ip, 0, 0);

37 double norm = Math.pow(m0O, (double)(p + q + 2) / 2);

38 return centralMoment (ip, p, q) / norm;

39 )

40

41 } // end of class Moments



Moment-Based Geometrical Properties

e Several interesting features can be derived from moments

e Orientation: describes direction of major axis that runs
through centroid and along the widest part of the region




Moment-Based Geometrical Properties

e Sometimes called the major axis of rotation since rotating the
region around the major axis requires the least effort than
about any other axis

e Direction of major axis can be calculated from central moments

2 un(R) _ e 2- ()
tan(20r) = 120 (R) — 1102 (R) # 0r = — tan (M2O(R) _ ,uoz(R))

e Resultisin the range [-90, 90]



Moment-Based Geometrical Properties

e Might want to plot region’s orientation as a line or arrow

e Using the parametric equation of a line

rT=+ N\ -xy= (;)—I—)\

Start
point

(costtm))

Direction
vector

e Region’s orientation vector x, can be computed as

where

xq = cos(Or) = {

yq = sin(fr) = <

0 for A=B=0
[% (l+ﬁ)} : otherwise,
(0 for A=B=0
(bﬁ)]; for A>0

A = 2p1(R)

for A <O,

B = p20(R) — po2(R)



Moment-Based Geometric Properties

e Eccentricity: Ratio of lengths of major axis and minor axis
e Expresses how elongated the region is

— 2 4 - 2
Ecc(R) = ar _ H20 + po2 + \/(}Lzo fo2)? + 4 - puiy

az oo + Moz — \/(Hzo — po2)? +4- Hi

e The lengths of the major and minor axis are

1

/\1 % 20,1 2
= () = ()
IR R

ner () - ()’



Moment-Based Geometrical Properties coc

e Example images with orientation and eccentricity overlaid
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Moment-Based Geometrical Properties

e Normalized central moments not affected by translation
or uniform scaling of a region but changed by rotation

e Moments called Hu’s moments (seven combinations of
normalized central moments) are invariant to translation,
scaling and rotation
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Projections

e Horizontal projection of
row v, is sum of pixel
intensity values in row v,

e Vertical projection of
row u, is sum of pixel
intensity values in row u,

e For binary image,
projection is count of
foreground pixels in
corresponding row or
column
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Projections

e Image projections are 1d representations of image contents
e \Vertical and horizontal projections of image /(u,v) defined as

M-1

Pror(vg) = Z I(u,vo) for 0 <vg< N
u=0
N-1

Pior(ug) = Z I(ug,v) for O<ug< M



Code to Compute Vertical and Horizontal

Projections

1 public void run(ImageProcessor ip) {
2 int M = ip.getWidth();

3 int N = ip.getHeight();

4 int[] horProj = new int[N];

5 int[] verProj = new int[M];

6 for (dnt v = 0; v < N; v++) {

7 for (int u = 0; u < M; u++) {

8 int p = ip.getPixel(u, v);

9 horProj[v] += p;

10 verProj[u]l += p;

11 }

112 i

13 // use projections horProj, verProj now
14 S

15 }




Topological Properties e

e Capture the structure of a region
e Invariant under strong image transformations
e Number of holes is simple, robust feature

e Euler number: Number of connected regions — number of
holes

Ng(R) = Nr(R) — NL(R)

e Topological features often combined with numerical features
(e.g. in Optical Character Recognition (OCR))



Basics Of Color

e Elements of color:
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What is color?
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e Coloris defined many ways ¢ //_V\"\
e Physical definition S .
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e Wavelength of photons
e Electromagnetic spectrum: infra-red to ultra-violet

e But so much more than that...
e Excitation of photosensitive molecules in eye
e Electrical impulses through optical nerves

e |Interpretation by brain



Introduction

e Color description: Red, greyish blue, white, dark
green...

e Computer Scientist:

e Hue: dominant wavelength, color we see
e Saturation

how pure the mixture of wavelength is

How far is the color from gray (pink is less saturated than
red, sky blue is less saturated than royal blue)

e Lightness/brightness: how intense/bright is the light



Recall: The Human Eye

e The eye:

e The retina
e Rods

e Cones

Color!
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Recall: The Human Eye

e The center of the retina is a densely packed region
called the fovea.

e Eye has about 6- 7 million cones
e Cones much denser here than the periphery

1.35 mm from rentina center

8 mm from rentina center




The Human Eye

e Rods:

relatively insensitive to color, detail

Good at seeing in dim light, general object form
e Human eye can distinguish

128 different hues of color
20 different saturations of a given hue

e Visible spectrum: about 380nm to 720nm

e Hue, luminance, saturation useful for describing
color

e Given a color, tough to derive HSL though



Tristimulus theory

3 types of cones

e Loosely identify as R, G, and B
cones

Each is sensitive to its own

spectrum of wavelengths

Combination of cone cell
stimulations give perception of
COLOR

Fraction of light absorbed
by each type of cone
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The Human Eye: Cones

e Three types of

cones:

e LorR, most sensitive to red light (610 nm)
e M or G, most sensitive to green light (560 nm)
e S or B, most sensitive to blue light (430 nm)
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e Color blindness results from missing cone type(s)



The Human Eye: Seeing Color

The tristimulus curve shows
overlaps, and different levels
of responses

Eyes more sensitive around
550nm, can distinquish
smaller differences

What color do we see best?
o Yellow-green at 550 nm

What color do we see worst?
e Blue at 440 nm
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Color Spaces

e Three types of cones suggests color is a 3D quantity.
e How to define 3D color space?

e Color matching idea:
shine given wavelength (A) on a screen
Mix three other wavelengths (R,G,B) on same screen.
Have user adjust intensity of RGB until colors are identical:
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Color Spaces

e Alternate lingo may be better for other domains
e Artists: tint, tone shade

e Computer Graphics/Imaging: Hue, saturation,
luminance

e Many different color spaces
e RGB
o CMY
e HLS
e HSV Color Model
e And more.....
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Some color spaces are additive, others are subtractive
Examples: Additive (light) and subtractive (paint)



RGB Color Space

e Define colors with (r, g, b) amounts of red, green, blue

e Additive, most popular

e Maximum value = 255 or 1.0 if normalized

e (0,0,0) =black, (1,1,1) = White

e Equal amounts of R,G, B = gray (lies on cube white-black diagonal)

1.1,0 1,1,1

Yellow () () White
0,1,0 /
Green T 0.1.1

Cyan

1,0,0

Magenta
0,0,0
Black 0,0,1

Blue




RGB Color Images

RGB image is shown with
corresponding RGB channels

The fruits are mostly yellow and
red hence high valuesin Rand G
channels

Values in B channel are small
except for bright highlights on
fruit

Tabletop is violet which contains
higher values in B channel

Most operations we have studied
so far in grayscale can work on |
color images by performing
operation on each channel (RGB) [




CMY

Subtractive
For printing
Cyan, Magenta, Yellow

Sometimes black (K) is also
used for richer black

(c, m, y) means subtract the
compliments of C (red) M
(green) and Y (blue)
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RGB — CMY Relationship .
e Interesting to put RGB and CMY in
same cube
e R,G,Band C,M,Y lie at vertices
RGB Value
e Perception of RGB may be non- Point  Color R G B
. S |Black 0.00]0.00]0.00
I|near R |Red 1.00[0.00]0.00
Y |Yellow 1.00(1.00]0.00
G | Green 0.00]1.00]0.00
C |[Cyan 0.00]1.00(1.00
B |[Blue 0.00]0.00|1.00
M |Magenta [|1.00/0.00]|1.00
W | White 1.00{1.00]1.00
K |50% Gray||0.50]0.50(0.50
R+5 |75% Red [[0.75[0.00(0.00
Rs0 |50% Red [[0.50]0.00({0.00
Ros [25% Red [[0.25(0.00(0.00
P |Pink 1.00{0.50]10.50




HLS

e Hue, Lightness, Saturation
e Based on warped RGB cube

e Lookfrom(1,1,1)to (0,0,0) or RGB
cube

e All hues then lie on hexagon
e Express hue as angle in degrees
e O degrees: red

Cyan &




HSV Color Space

e More intuitive color space

e H=Hue
e S =Saturation

e V =Value (or brightness)

e Based on artist Tint, Shade,

Tone

e Similar to HLS in conTept
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Examples of Color Distribution of
Natural Images in 3 Color Spaces

YUV



Converting Color Spaces

e Converting between color models can also be
expressed as such a matrix transform:

R G B|=[x Y Z]

| -1.145  2.029
—0.424 0.033

2739 -1.110 0.138 |

—-0.333

1.105



Conversion to Grayscale

Simplest way to convert color to grayscale

R+G+B

Y = Avg(R,G, B) = 3

Resulting image will be too dark in red and green areas
Alternative approach is use a weighted sum of RGB

Y = Lum(R,G,B) =wr-R+wg -G+ wp-B

Original weights for analog TV
wr = 0.299 we = 0.587 wp = 0.114

Newer ITU weights for digital color encoding
wr = 0.2125 wg = 0.7154 wp = 0.072



Hueless (Gray) Color Images

e An RGB image is hueless or gray when all components equal
R=G=B
e To remove color from an image

e Use weighted sum equation to calculate luminance value Y
e Replace R,G and B components with Y value

G)-()

e In Imagel, simplest way to convert RGB color image to grayscale
is to use method convertToByte( boolean doscaling)

e convertToByte( boolean doscaling)uses default weights
e Can change weights applied using setWeightingFactors



Desaturating Color Images

e Desaturation: uniform reduction in amount of RGB

e How? Calculated the desaturated color by linearly
interpolating RGB color and the corresponding (Y,Y,Y) gray
point in RGB space

Ry Y R-Y
Ggl — Y | +5sc1' | G—Y
By Y B-Y

e s_,takesvaluesin[0,1] range



1 // File Desaturate_Rgb.java
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import
import
import

public

ij.ImagePlus;
ij.plugin.filter.PlugInFilter;
ij.process.ImageProcessor;

class Desaturate_Rgb implements PlugInFilter {

static double sCol = 0.3; // color saturation factor

public int setup(String arg, ImagePlus im) {
return DOES_RGB;

}

public void run(ImageProcessor ip) {

Y

// iterate over all pizels
for (int v = 0; v < ip.getHeight(); v++) {
for (int u = 0; u < ip.getWidth(); u++) {

}

}

// get int-packed color pizel
int ¢ = ip.get(u, v);

// extract RGB components from color pizel
int r = (¢ & 0xff0000) >> 16;

int g = (c & 0x00££00) >> 8;

int b = (¢ & 0x0000£f);

// compute equivalent gray value
double y = 0.299 * r + 0.587 * g + 0.114 * b;

// linearly interpolate (yyy) < (rgb)
r = (int) (y + sCol * (r - y));
g = (int) (y + sCol * (g - y));
b = (int) (y + sCol * (b - y));

// reassemble color pizel
c = ((r & 0xff)<<16) | ((g & 0xf£f)<<8) | b & Oxff;
ip.set(u, v, c);

44 } // end of class Desaturate_Rgb

Imagel
Desaturation
Plugin
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