Computer Graphics (CS/ECE 545)
Lecture 7: Morphology (Part 2) &
Regions in Binary Images (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

00
0000
| X XN
53
Recall: Dilation Example :
e For A and B shown below
B = 1{(0,0),(1,1),(—1,1),(1,—1), (—1,—1)}
1 2 3 4 5 1 2 3 4 5
1 1
2 [BN | 2
3 ® o 3 ® O
4 | BN | -1 0 1 4 ® o
5! | BN BN | —1| @ o 3 ® o
6 ® o 0 @ - 6 ® ® o
7 1| ® (:;) 7 o0
A B 1’1(1._1;

Translation of A
by (1,1)

Dilation Example

Recall

| Ten)

o

1

21 0|@

110 @ @

o

I~

[Im}

6

| Eqn]

6

1)

:’1(]1

fl(]..]J

Union of all translations

IS AN BN BN J

200 e e

1

-1 0

SHE BE AN AN

110 0 ® 0 &

6

7

A B

000
0000
| X XN
XX
. o0
Recall: Erosion °
e Given sets A and B, the erosion of A by B
AeB={w: B, C A}
e Find all occurrences of Bin A
1 2 3 4 5 6 1 2 3 4 5 6
1 ® 1 o
K XL K I XX 2 o ®o®ol® @@
—10 1 3 o ol oo 3 oo oo
-1 ¢ 4 oo |o 4 oo |o
lj@e e 5) ® & & o o 5 ® 6 6 o o
1 hd 6 ® e 6 ® O
12 A

Example: 1 occurrence
of BinA

Recall: Eros

All occurrences
of Bin A

For each
occurrences
Mark center of B

Erosion: union
of center of all
occurrences of
BinA

| S

h Ot = o

[R | = B o B

1

2

ion

3

4

3]

on

D

[p T o | ST T

e R A S I

L R | = T

iy §

o9 o

2

iy §

SN}

o

AS

[o e I

[=) B

[o B e

[|

]

o

Opening

e Opening and closing: operations built on dilation and erosion

Opening of A by structuring element B
AoB=(A6B)®B.

i.e. opening = erosion followed by dilation. Alternatively

AoB =U{B, : B, C Al.

i.e. Opening = union of all translations of B that fitin A

Note: Opening includes all of B, erosion includes just (0,0) of B

WK XN BE BE=

T = W o = O

® & 0 C

e o 0 ~

T = W o = O

01 2 3 4 5

AOB

T = W o = O

0

2

3 4 5

1
@
|
@

Opening

Closing

Opening

LA

DL irIeye |

SENFT S8 A WL

Binary opening and closing with disk-shaped
Structuring elements of radius r = 1.0, 2.5, 5.0

e All foreground

structures smaller
than structuring
element are
eliminated by first
step (erosion)

Remaining
structures smoothed
by next step
(dilation) then
grown back to their
original size

Properties of Opening

01 2 3 4 5 01 2 3 4 5 01 2 3 4 5
el e @ 0 0 °
llele @ 1 ° 1 ole @
-10 1 2] @ @ @ @ 2 [] 2 ® 0o o
- et 3 e o000 3 ° 3 C3N BN
(VW ee e 4 o olo 4 ° 4 oo o
hd 5 o olo 5 5 °
B A AOB A40B

(Ao B) C A. : Opening is subset of A (not the case with erosion)

(AoB)o B = Ao B.:Can apply opening only once, also called
idempotence (not the case with erosion

Subsets: If A C C, then (Ao B) C (Co B).

Opening tends to smooth an image, break narrow joins, and
remove thin protrusions.

Closing

e Closing of A by structuring element B
AeB =(A® B)o B.
e i.e. closing = dilation followed by erosion

01 23 456 01 2 3 4 5
0 0 oo o °
1 e 0o 0 ° l|loo0o o o
2 ° ° 2/ eleel el e|e
—10 1 3] e e e |e 3 eele/e/ee
—1 d 4 4 oo 000
0o @ @ 5 e o 0o lelel e e el e
® 6 6 o o 0o 0 o

B A Aa B

S U= W e = O

000
L X
®
1 2 3 4 5 6
® o o o
® 0 0o o
_ BN BN BE BN
o o o
® o o o

Properties of Closing

1. Subset: A C (AeDB).

2. ldempotence: (AeB)e B = AeB;

3. Also IfACC,then (AeB)C (CeB).

4. Closing tends to:
a) Smooth an image
b) Fuse narrow breaks and thin gulfs
¢) Eliminates small holes.

An Example of Closing

Crogss-Correlation Used
To Locate A Known
Target in an Image

=P
:iﬁrn
= S &
K-
'U,,..,-ﬂ
= 0

Noise Removal: Morphological Filtering

e Suppose A is image corrupted by impulse noise (some
black, some white pixels, shown in (a) below)

(a)
e A© B removes single black pixels, but enlarges holes

e We can fill holes by dilating twice ((A © B) ® B) @ B.

Noise Removal: Morphological Filtering

(b) Filter once
(c) Filter Twice

(a) (b) (c)
First dilation returns the holes to their original size

Second dilation removes the holes but enlarges objects in image

To reduce them to their correct size, perform a final erosion:
((AeB)® B)@® B) e B.

Inner 2 operations = opening, Outer 2 operations = closing.

This noise removal method = opening followed by closing
(Ao B)eB).

Relationship Between Opening and Closing

e Opening and closing are duals

i.e. Opening foreground = closing background, and vice versa

e Complement of an opening = the closing of a complement

AeB=A0RB

e Complement of a closing = the opening of a complement.

AoDB = AeB.

Grayscale Morphology

e Morphology operations can also be applied to grayscale
Images

e Just replace (OR, AND) with (MAX, MIN)

e Consequently, morphology operations defined for
grayscale images can also operate on binary images (but
not the other way around)

Imagel has single implementation of morphological operations that
works on binary and grayscale

e For color images, perform grayscale morphology
operations on each color channel (RGB)

e For grayscale images, structuring element contains real
values

e Values may be —-veor0

Grayscale Morphology

e Elements in structuring element that have value 0 do
contribute to result

e Design of structuring elements for grayscale morphology
must distinguish between 0 and empty (don’t care)

Q= O

— N

o = O
N

=

= N
—

1.

000
0000
o000
s s o000
Grayscale Dilation oo
e Grayscale dilation: Max (value in filter H + image region)
(I & H)(u,v) = max {I(u+i,v+35)+ H(i,j)}
(i,)eH
I H I®H
Place filter Hover [e 171314 11111 4. Place max value (8)
region of image | &——] atcurrent filter origin
slelels| @ [1]2)]1]| = 8|9
64|52 1111 719
61423
I+H
2. Add corresponding - Ts¥ 1] /_— max
values (I + H)
~ : ﬂ 7 Note: Result may be negative
7156 value

3. Find max of all
values (I+H) =28

000
0000
e000
° o000
Grayscale Erosion T
e Grayscale erosion: Min (value in filter H + image region)
(I o H)(u,v) = min {I(u+i,v+j)— H(i,j)}
(i,5)€eH
1 H e
1. Place filter H over 6|7|3])4 1|1|1 4. Place min value (2)
region of image | 5161618 o 11211 — 2(—1—/ at current filter origin
6(4|5]2 111 11
61423
I—H

2. Subtract corresponding

values (H- 1) 516 2*4/min
~|4[4]5
3. Find max of all 5134 Note: Result may be negative

values(H-1)=2 value

Grayscale Opening and Closing

e Recall: Opening = erosion then dilation:

e So we can implement grayscale opening as:

e Grayscale erosion then grayscale dilation

e Recall: Closing = dilation then erosion:
e So we can implement grayscale erosion as:

e Grayscale dilation then grayscale erosion

Grayscale Dilation and Erosion

Dilation Erosion

e Grayscale dilation and
erosion with disk-shaped
structuring elements of
radius r=2.5,5.0, 10.0

Dilation

Erosion

Grayscale Dilation
and Erosion

e Grayscale dilation and
erosion with various
free-form structuring
elements

Grayscale Opening and Closing oo

Opening Closing

e Grayscale opening and
closing with disk-shaped
structuring elements of
radius r= 2.5, 5.0, 10.0

Implementing Morphological Filters

e Morphological operations implemented in Imagel as methods
of class ImageProcessor
dilate()
erode()
open()
close()
e The class BinaryProcessor offers these morphological
methods
outline()
skeletonize()

© 0 = O U bW

10
Ll
12
13
14
15
16
17
18
19
20
21
22
23

Implementation of Imagel dilate()

void dilate(ImageProcessor I, int[][] H){

¥

//assume that the hot spot of H is at its center (ic,jc):
int ic = (H[O].length-1)/2;

int jc = (H.length-1)/2; <

//create a temporary (empty) image:

Center of filter H
assumed to be at center

ImageProcessor tmp <€
= I.createProcessor(I.getWidth(),I.getHeight());

for (int j=0; j<H.length; j++){
for (int i=0; i<H[j].length; i++){
if (H[1[i] > 0) { // this pizel is set
//copy itmage into position (i-ic,j-jc):

tmp. copyBits(I,i-ic,j-jc,Blitter.MAX) ;€
X
}

}
//copy the temporary result back to original image

I.copyBits(np,0,0,Blitter.COPY); <€

Create temporary copy
of image

Perform dilation by
copying shifted version
of original into tmp

Replace original image
destructively with tmp image

Implementation of Imagel Erosion

e Erosion implementation can be derived from dilation
e Recall: Erosion is dilation of background
e Soinvert image, perform dilation, invert again

24 void erode (ImageProcessor I, int[][] H) {

25 ip.invert () ;
26 dilate(ip, reflect(H));
27 ip.invert () ;

28 }

Implementation of Opening and Closing

e Recall: Opening = erosion then dilation:

20 void open(ImageProcessor I, int[][] H) {

30 erode(I,H);
31 dilate(I,H);
32 F

e Recall: Closing = dilation then erosion:

33 void close(ImageProcessor I, int[][] H) {
34 dilate(I,H);

35 erode(I,H);

36)

Hit-or-Miss Transform

e Powerful method for finding shapes in images
e Can be defined in terms of erosion

e Suppose we want to locate 3x3 square shapes (in image
center below)

e If we perform an erosion A © B with B being the square
element, result is:

Hit or Miss Transform

e If we erode the complement of A, with a structuring element C
that fits around 3x3 square

oo 0o 000000000 0 oo ® o o oo
(K) ° ° o o o ® ®
4 | e|le ° ® K ¢: | @ ®
o0 ° ° o oo ® ¢
o0 000000 000 0 0 oo ® o 0o 00

e Resultof 4o is

e Intersection of 2 erosion operations produces 1 pixel at center
of 3x3 square, which is what we want (hit or miss transform)

Hit-or-Miss Transform: Generalized

e If we are looking for a particular shape in an image, design 2
structuring elements:
B, which is same as shape we are looking for, and
B, which fits around the shape
We can then write B = (B,, B,)

e The hit-or-miss transform can be written as:

A®B= (A0 B))N (A0 Bs)

Morphological Algorithms: Region 3
Filling
e Suppose an image has an 8-connected boundary
o 20 o 10 1
® o —1 o
® o 0 @ ® @
o L ®
. . E

e Given a pixel p within the region, we want to fill region

e To do this, start with p, and dilate as many times as necessary
with the cross-shaped structuring element B

Region Filling

@ After each dilation, intersect with A before continuing
e We thus create the sequence:

{p} — XO?X[!X‘Za'" an — Xk’—l—l
for which

X, = (X1 @ B) NA.
e Finally X, U A is the filled region

oo /o/ojeo0 e
S oo o
o |ojo| oo 615
o oje| oo 5] 4
_ e|le |e| e|e 3
4 Tele| |o| e e 9
o oloje o 20112
o/ oloje o 1p|1
° o0
oo 0ojojeo 0 0

Connected Components

e We use similar algorithm for connected components

Cross-shaped structuring element for 4-connected components

Square-shaped structuring element for 8-connected components

e To fill rest of component by creating sequence of sets

XQ — {I)},XMXQ.J...

such that

until Xk — X}.‘:—l-

e Example:

Xp = (Xn—l D B) NA

o

o

2

1

2

111

1

P

1

Pl

2

1

2

111

Using the cross

Using the square

Skeletonization

e Table of operations used to construct skeleton

Erosions | Openings Set differences
A AoB A— (Ao B)
o B (A6 B)oB (Ae B)— ((A© B) o B)
©02B | (Ao2B)oB | (A©2B)—- ((A©2B)o B)
©3B | (A©o3B)oB | (A©3B)— ((A©3B)o B)
AOkB | (AokB)oB | (Ao kD) — ((A© kD) o B)

e Notation, sequence of k erosions with same structuring

element: Ao kB
e Continue table until (A © kB) o B is empty
e Skeleton is union of all set differences

Skeletonization Example

| 3N BN BN L BN} [[)
(AN BN BN ® o oo
| 3N BN BN oo 00
(AN BN BN BN BE BN | L BN BN BN BN BN ®
® o 0o o000 L AN AN BN AN BN AN
L AN BE BE BN BE BN | L BN NN BN BN AN BE J
[2N BE AN AN AN BN) L 2N BE AN AN o ®
A Ao B A— (Ao B)
L AN L AR
L AN) [] [)
L AN BN [AN BN
(AN BN AN BN { AN BN BN | ®
® e o 0|0 e e ® L AN
le b (AeB)oB (AeB)—-((Ae B)oB)
o ®
[BN L BN
AS2B (Ao2B)o B (Ao2B) - ((Ac2B)o B)

o
[
e e e o
[

Final skeletonization
is union of all entries
in 379 column

This method of skeletonization
is called Lantuéjoul's method

Example: Thinning with Skeletonize()

Original Image o
Results of thinning

original Image

Detail Image o
Results of thinning

detail Image

References

e Wilhelm Burger and Mark J. Burge, Digital Image
Processing, Springer, 2008

e Rutgers University, CS 334, Introduction to Imaging
and Multimedia, Fall 2012

e Alasdair McAndrews, Introduction to Digital Image
Processing with MATLAB, 2004

Computer Graphics (CS/ECE 545)
Lecture 7:
Regions in Binary Images (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Motivation

e High level vision task: recognize objects in flat black and white
Images:
e Texton apage
e Objects in a picture
e Microscope images

e Image may be grayscale

e Convert to black and white
gl L Y In 1830 there were but twenty-three
oe) Oo @ , miles of railroad in operation in the
D United States, and in that year Ken-
0 0 O o tucky took the initial step in the work
Doo Oo o (west of the Alleghanies. An Act to
O (O incorporate the Lexington & Ohio
OOOO ' Railway Conipany was approved by

Gov. Metcalf, January 27, 1830.. [t
provided for the construction and re-

Motivation

e Binary image: pixels can be black or white (foreground and
background)

e Want to devise program that finds number of objects and
type of objects in figure such as that below

Binary image
with 9 objects

Motivation

e Find objects by grouping together connected groups of pixels
that belong to it

e Each object define a binary region

e After we find objects then what?

We can find out what objects are (object types) by comparing to
models of different types of objects

AN

~ /A

Finding Image Regions

e Most important tasks in searching for binary regions
e Which pixels belong to which regions?
e How many regions are in image?

e Where are regions located?

e These tasks usually performed during region labeling (or
region coloring)

e Find regions step by step, assign label to identify region
e 3 methods:
e Flood filling

e Sequential region labeling
e Combine region labeling + contour finding

Finding Image Regions

e Must first decide whether we consider 4-connected (N,) or

connected (N,) pixels as neighbors

N N3

N2 N5 N2 N6
Ni | x| N3 N1 | x| Ns

N4 NS N4 N7

e Adopt following convention in binary images

0 background pixel
I(u,v) =4¢ 1 foreground pixel
2,3,

... region label.

Region Labeling with Flood Filling

e Searches for unmarked foreground pixel, then fill (visit and mark)
e 3 different versions:

e Recursive
e Depth-First
e Breadth-First

e All 3 versions are called by the following region labeling algorithm

I: RecioNLABELING(T)
I: binary image (0 = background, 1 = foreground)
The image I iz labeled {(destroctively modified) and retarned.

i Imitialize m «— 2 (the value of the next label to be assigned).

& [terate over all image coordinates («, o).

4 if f{u.v) =1 then

5T FroonFiLLf, u, v, m) B use any of the 3 versions helow
iR e — e+ 1.

T return the labeled image [,

Recursive Flood Filling

e Test each pixel recursively to find if each neighbor has I(u,v) =1

e Problem 1: Each pixel can be tested up to 4 times (4 neighbors),
inefficient!
e Problem 2: Stack can be exhausted quickly

e Recursion depth is proportional to size of region
e Thus, usage is limited to small images (approx < 200 x 200 pixels)

8 FroopFILL(l, u, v, label) = Recursive Version
L' if coordinate (w, v) is within image boundaries and [{u, ») = 1 then
101 Set fu, v) — label
11: FLOODEFILLIS, w41, v, label)
12: FrLoopFILL(], u, v+ 1, label)
13 FLOoODFILLIL, u, v=1, label)
14: FLOooDFILLIL u—1, v, label) (U V+1)
15 return. ‘
(u-1,v (u+1, v)

(u, v-1)

Depth-First Flood Filling

e Records unvisited elements in a stack

e Traverses tree of pixels depth first

1
17:
15:
19:
20:

e

3

21:

22
23
24:
25
26

27

FroopFiLL(f, u, v, label) Depth-First Version

Create an empty stack 5
Put the seed coordinate {u, v} onto the stack: Puse(S, {u, v})
while 5 is not empty do
Get the next coordinate from the top of the stack:
{z.y) — Por(S)
if coordinate (x.y) is within image boundaries and e y) = 1
then
oot Jx, uw) — label
PusH(S, (x+1, 1))
Puosu(s, {x,y+1))
Pusu(&, {x, y—1})
PusH(S, {(z—1,¥})
return.

Breadth-First Flood Filling

e Similar to depth-first version

e Use queue to store unvisited elements instead of stack

28: FroopFiuu(f, u, v, label) & Breadth-First Version

29: Create an empty gqueue ()

a0 [nsert the seed coordinate (u, o) into the gquens: ExoUueve(), {u. v))

3l while (7 is not empty do

32 Giet the next coordinate from the front of the queie:
{x. g} — DEQUEUE(L))

RS if coordinate {z,y) is within image boundaries and Ir, y) = 1
then

3 Set fx,y) ~— label

a5 Exgueve(}, {x+1, y})

36 Exngueve(id, {x. y+1})

ar: Exgueve(}, {x, y—1})

a8 Exgueve(d, {x—1. u})

39: return,

Depth-First Flood-Filling e

e Let’s look at an implementation of depth-first flood filling
e A run: group of adjacent pixels lying on same scanline
e Fill runs(adjacent, on same scan line) of pixels

Region Filling Using Coherence

e Example: start at s, initial seed

a) b) stack:
H LI d]

d € 1 d

| L ' Pseudocode:

Push address of seed pixel onto stack
while(stack 1s not empty)

{

Pop stack to provide next seed

Fill 1n run defined by seed

= ' In row above find reachable iInterior runs
Push address of their rightmost pixels

| | Do same for row below current run

4=
=y

Note: algorithm most efficient if there is span coherence (pixels on scanline
have same value) and scan-line coherence (consecutive scanlines similar)

000
000
000
o000
Java Code for Depth-First Flood Filling e

Depth-first variant (using a stack):

9 void floodFill(ImageProcesser ip, int x, int y, int label) {

10 Stack<Node> s = new Stack<Node>(); // slack

11 s.push(new Node(x,y));

12 while (!s.isEmpty()){ Uses push(), pop()

13 Node n = s.pop(); 1sEmpty() methods

14 if ((n.x>=0) &k (n.x<width) && (n.y>=0) k& (n.y<height) Of Java class Stack

15 &k ip.getPixel(n.x,n.y)==1) {

16 ip.putPixel (n.x,n.y,label);

17 5.push(nev Node(n.x+1,n.y));

15 s.push{new Nede(n.x,n.y+1});

19 s.push({new Node(n.x,n.y-1J));

20 s.push(nev Node(n.x-1,n.y));

21 }

2 }

23 }

000
000
(| X X
o000
Java Code for Breadth-First Flood Filling e

Breadlh-first variant (using a gqueue):

24 void floodFill (ImageProcessor ip, int x, int y, int label) {

25 LinkedList<Nede> q = new LinkedList<Node>(); // queue

26 q.addFirst(nev Node(x,y));

27 while (!q.isEmpty()) { Uses Java class LinkedList

28 Node m = q.removelast(); with access methods

pat if ((n.x>=0) && (n.x<width) &&.{En-yF{r} &k (n.y<height) addFirst()for ENQUEUE()

0 &k ip.getPixel(n.x,n.y)==1)

a1 ip.putPixel(n.x,n.y,label); removelast()for DEQUEUE()

32 q.addFirst(new Node(n.x+1,n.y));

*3 q.addFirst(new Node(n.x,n.y+1));

2 q.addFirst(new Node(n.x,n.y-1));

35 q.addFirst(new Nede(n.x-1,n.y));

36 }

37T F

s)

a : ——_ Starting point
Original & (arbitrary) o

(b)
K= 1.000 \ Intermediate results after
K =1000, 5,000 and 10,000 iterations
(c)
Comparing Depth-First
w Vs Breadth-First Flood
Filling

Sequential Region Labeling

e 2 steps:
Preliminary labeling of image regions

Resolving cases where more than one label occurs (been previously
labeled)

e Even though algorithm is complex (especially 2" stage), it is
preferred because it has lower memory requirements

e First step: preliminary labeling

e Check following pixels depending on if we consider 4-
connected or 8-connected neighbors

No No N3 Ny
Ni(u,v) = Ny X or MNg(u,v) = Ny X

: Propagating Labels

Preliminary Labeling

e Consider the following image:

o
s 2
= 3
© o
by =
o0 g
~4)
Q =
< o
aal &2
S [
O|O(O|O|O|O|0|O
OoO|lH|lH|H|H|H OO
C|O|IC|Oo|dH|H OO
OlH|O|IO|Hd|H OO
Ol Ol OO
O OIC|O|d| O
| O|IC|O|dH|H O|O
O|lH|lH|H|H|H[H|O
OlHd|H|O|H|HO|O
O|IO|H|HA H|H| OO
O|O(H|O|H|O|O|O
O|O(H|IO|H|IO|H|O
I OIHOIH| OO
O OIC|OIO|O|O|O
~
<
N

e Neighboring pixels outside image considered part of background

e Slide Neighborhood region N(u,v) horizontally then vertically

starting from top left corner

new label (2)

(b) only background neighbors

o|o|olo|o|o|o|o
O|ld|Hd|ld|H[H|O|O
O|O|O|(O|H|+H|O|O
Ol O|O||+H OO
OlH|H|O|H | O|O
OO0 |O| ||+ |O
o|C|O|O|H|H| OO
OlH|HlH|H|H|H|O
J2fa| o+ oo
OOo|H|H|H|H | O|O
OO|H|O|H|O|O|O
Oo|Oo|H|[Oo|H|O|+H|O
Cl|lOH|IO|H|O|H|O
OO0 |O|C|O|O|O
OIO|O|O|O|O|0 |0
OlH|H|lH|H|H|O|O
o|o|O|O|H|H|O|O
Ol OO+ |O|O
Ol H|O|H|H| OO
QOO0 | O
OO0 |O|H |+ O|O
OlH|H|lH ||| |O
1ol-H|H|o|(H|—H|O|O
QIO ||| O|O
OO|H|O|H|O|O|O
OO H|O|H|O|H|O
OO H|O|H|O|H|O
C|O|O(O(O|(O|O|O

: Propagating Labels

Preliminary Labeling

e First foreground pixel [1] is found

e All neighbors in N(u,v) are background pixels [0]

e Assign pixel the first label [2]

new label (2)

OOOOO‘QOOOOOOOO

0{0]0]|0|0|2]1]0|0]1]|1[0|1]|0

0|1/1)]1)1§1{1|0{0|1/0(0|1]|0
0[0{0]|0f1|/0|1|0|0]|0|0]0O0|1]|0
O|1|1j1)1f1{1}(1|1]1]1(1[{1|0

0 ({00 |0 [FNFEFisiEs B e O

0[1{1/0/0|0|1|0]1]|0[0]0]|0]|0
0/0]0|0]|0|0]0]|0|O]|0[|0[O|0O]O

(b) only background neighbors
00000600000000

0{0(0]0]0})1}J1[{0[0|1]|1]0f1]0

0|1/1(1{1{1{1/0|0(1({0[0|1]0
0{0|0]|0|1[/0[1|0|0|0O]0O|0O]1]|0
O|1|1 (111|111 (1({1[1]|1]0

0[O0 (0|0 [snFNEEaFINEISFN IS FEN O

0{1/1]0|0(0|1[{0[1/0]|0|0O0]0O
0/0/0]0]|0|0|0O[0]O|0O]|O]O0O]O

: Propagating Labels

Preliminary Labeling

e In next step, exactly on neighbor in N(u,v) marked with label 2,

so propagate this value [2]

neighbor label is propagated

exactly one neighbor label

()

OO0 |OIO|O(O|O
OoO|lH|H|H|H|H|O|O
OO0 |O|H|H(O|O
O OO H(O|O
OlH|H|O|HH O|O
O|IO(O|O|H|H|H|O
elielielieli ko llelie)
oI H|H|H|H|H|O
OIN|H|O|HH O|O
O O [N © | ©
OIO(HOH OO0
O O(HOHO|H|O
OIO|H|IO|H|O|H|O
OO0 |C|O
OO0 |O|O|O|OC|O
O|lH|H|H|—|H|O|O
o|o(Oo|O|H|H | OO
OIHIO|IO|H|H OO
Ol-|-H|O|-H|H|O|O
OO0 |O|H|H | O
OO |C(O|HH|O|O
Ol H|H|H|H|O
1SN H(O|H (| OO
O O|H|H|H|H|O|O
O O|H|O|HO|O|O
O|O|H|OIH|OIH|O
OIO|H|IO|H|O|H|O
O|IO(O|O|O|0O|C|O

Preliminary Labeling: Propagating Labels

Continue checking pixels as above

At step below, there are two neighboring pixels and they have
differing labels (2 and 5)

One of these values is propagated (2 in this case), and collision
<2,5> is registered

(d) two. different neighbor labels one of th.e labels (2) is propagated
0(0|0]0]0 0|0(0]|0|0(0]|0|0 0|0[0[0[0[0|0|0|0|0[|0|0]|0]O0
0/0]0 0 2(0]0(3|3(0(4]|0 010]|0|0 212|0(0]13[3(0]4]|0
0 PSS 1/11{1/{0(0(1|0|0]|1]0 O |IB5]| 5 1/{1{0(0|1/0]|0]|1]|0
0(0|0|O(1]|0[1|/0|0(|0O]|0O|Of1]|0 0/|0{0(0]|1]{0(1]|0(0|0[0(0]|1]|0
o111 (1|1f2 (1111110 O || REN IR (L s L R | O
0[O0 (0|0 |EuEINENEINEIS NSl S O 010 |0 |0 [ENEEE IS N O
O0(1(1(0(0|0|1|0|1|0Of0O(0O|O]|O O(1/1/0{0{0|1|0|1({O0(O(0O|O]|0O
0/0|0[|O0(0|0[O0O|O0|O[|0]O[O[O]O0 0|0{0(0|0|O|0|O[0O]|O[0O[0O]|O]|O

Preliminary Labeling: Label Collisions

e At the end of labeling step
e All foreground pixels have been provisionally marked
e All collisions between labels (red circles) have been registered
e Labels and collisions correspond to edges of undirected graph

ololololololololololololo]o
ololololo[2]2]olo[3][3]0[4]0 @
o|615]|6]12I2[2]0[0[3[0]0]4]0 @-"“”
olo|oloT2]o|2]o|o]o|o]ofZNO
oM D[2(2(2[2[2][2]2]2%2/0
olo[oT0[2[2[2[2[2[2[2[2][2]0
ol ololo[2]o[2|o|olo]0]0 o
ojololololojololo|ololo|o]o

(a) (b)

Resolving Collisions

e Once all distinct labels within single region have been

collected, assign labels of all pixels in region to be the same

(e.g. assign all labels to have the smallest original label. E.g. [2]

Fan

®
O

o[2]olo[o]o]ofmho

(0] P) e e R

1912/2[2[2[2]|2]2|2%240

0(0|0/0]|0|0|0O|O|0O|0]|0|0O|0]|O0

ololo|olo[2]2]o]0][3]3]0]4]0
0l6/6/6]22]2]o]o][3]0]0]4]0

0/0]0|2]|0|2]{0|0]|0|0|O0

0/0|0[|0]|0|O|O|O[O|O]|O]|O]|O

0[0/0[0]|0(0]|0|0]|0|0|0[0[0]O

0[0/0[0]0(2]2|0(/0|3|3]|0(2]0
0(2]2(2]|2(2]|2|0(0/3/0]|0(2]|0

0[0/0[0]2(0]|2|0(0|0|0[|0(2]0

0]2]2]2]2|2]2|2]2|2]2][2|2]|0

0[0]/0|0]|2]2]|2]|2]2|2]|2][2|2]|0

%m

Sequential Region Labeling

e

b

an ke £

11:
12

L

14:

15:

[LiF

SeEquENTIaLLABELING(T)
I: binarv image (00 = bechground, 1 = foreground)
The image I is labeled {destructively modified) and returned.
*ags 1—AssicN INITIAL LABELS:
Initialize m o« 2 (the value of the next label to be assigned).
Create an empty set C to hold the collisions: € «— {}.
for ve=»0.. . H =1do t I = height of image [
for w+—0...W -1 do e W= width of image [
if f{u.v) =1 then do one of:
if all neighbors of (w, v) are background pixels (all n; = 0)
then
I, 4) — .,
= g 1.
else if exactly one of the neighbors has a label valne
i > 1 then
set Jluw, v) «— ne
else if scveral neighbors of (w, v) have label values n; > 1
then
Select one of them as the new label:
Hu,v) — &k € {n;}.
for all other neighbors of «, v) with label values 7; > 1
and n; #k do
Create a new label collision e = {n;, k).
Record the collision: C©«— CU {ei}.

Remark: The image [now contains label values 0,2,...m = 1.

<—— Preliminary labeling

Sequential Region Labeling

17:
13:

14
20

21:
2

23
24
25
26:

2T
28:

Pass 2—Resowve LABEL COLLISIONS:

Let £ = {2, 3,...m — 1} be the set of preliminary region labels,
Create a partitioning of £ as a vector of sefs, one set for each label
value: R «— [Ra, Ra,.... Rm-1] = [{2}, {3}, {4},..., {m — 1},

so R; = {i} for all i € £,
for all collisions (a,b) € C do
Find in ® the sets ®,, W), containing the labels a, b, resp.:
W, = the set that currently contains label a
Ty +— the set that currently contains label &
if W, #£ Ry, (o and b are contained in different sets) then
Merge sets R, and Ry by moving all elements of Ry, to R,:
R, — R, UR,
Ry — {}

Remark: All equivalent label values (i, e, all labels of pixels in the
same region) are now contained in the same set ®B; within &,

*as8 J—RELABEL THE IMAGE:
Iterate throungh all image pixels (w, v):
if I{u,v) =1 then
Fine the set T, in B that contains label I, «).
Choose one unigque representative element & from the set R;
{e.g., the minimum value, k = min(R;)).
Replace the image label: Flw,) — k.

return the labeled imase 1.

<—— Resolve label collisions

<—— Relabel Image

References

e Wilhelm Burger and Mark J. Burge, Digital Image
Processing, Springer, 2008

e Rutgers University, CS 334, Introduction to Imaging
and Multimedia, Fall 2012

