
CS 543: Computer Graphics
Lecture 9 (Part I): Shading

Emmanuel Agu

Recall: Setting Light Property

n Define colors and position a light

GLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0};
GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_position[] = {0.0, 0.0, 1.0, 1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

colors

Position

What if I set
Position to
(0,0,1,0)?

Recall: Setting Material Example

n Define ambient/diffuse/specular reflection and shininess

GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0};
GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shininess[] = {5.0}; (range: dull 0 – very shiny 128)

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_speacular);
glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

refl. coeff.

Recall: Calculating Color at Vertices

n Illumination from a light:
Illum = ambient + diffuse + specular

= Ka x I + Kd x I x (cos θ) + Ks x I x cos(φ)

n If there are N lights
Total illumination for a point P = Σ (Illum)

n Sometimes light or surfaces are colored
n Treat R,G and B components separately
n i.e. can specify different RGB values for either light or material
To:

Illum_r = Kar x Ir + Kdr x Ir x (cos θ) + Ksr x Ir x cos(φ)

Illum_g = Kag x Ig + Kdg x Ig x (cos θ) + Ksg x Ig x cos(φ)

Illum_b = Kab x Ib + Kdb x Ib x (cos θ) + Ksb x Ib x cos(φ)

n

n

n
n

Recall: Calculating Color at Vertices

Illum = ambient + diffuse + specular
= Ka x I + Kd x I x (cos θ) + Ks x I x cos(φ)

n (cos θ) and cos(φ) are calculated as dot products of Light
vector L, Normal N, and Mirror direction vector R

n To give
Illum = Ka x I + Kd x I x (N.L) + Ks x I x (R.V)

n

θ

p

φ

n

N
V

RL

Surface Normals

n Correct normals are essential for correct lighting
n Associate a normal to each vertex

glBegin(…)
glNormal3f(x,y,z)
glVertex3f(x,y,z)
…

glEnd()

n The normals you provide need to have a unit length
n You can use glEnable(GL_NORMALIZE) to have

OpenGL normalize all the normals

Lighting revisit

n Light calculation so far is at vertices
n Pixel may not fall right on vertex
n Shading: calculates color to set interior pixel to
n Where are lighting/shading performed in the pipeline?

modeling and
viewing

v1, m1

v2, m2 v3, m3

per vertex
lighting projection

clippinginterpolate
vertex colors

viewport
mapping

Rasterization
texturing
shading

Display

Example Shading Function (Pg. 432 of Hill)

for(int y = ybott; y < ytop; y++)
{

find xleft and xright
for(int x = xleft; x < xright; x++)
{

find the color c for this pixel
put c into the pixel at (x, y)

}
}

nScans pixels, row by row,
calculating color for each pixel

color3

color4

color1

color2

xrightxleft

ybott
ys

y4

ytop

Polygon shading model

n Flat shading - compute lighting once and assign the
color to the whole (mesh) polygon

Flat shading

n Only use one vertex normaland material property to
compute the color for the polygon

n Benefit: fast to compute
n Used when:

n Polygon is small enough
n Light source is far away (why?)
n Eye is very far away (why?)

n OpenGL command: glShadeModel(GL_FLAT)

Mach Band Effect

n Flat shading suffers from “mach band effect”
n Mach band effect – human eyes accentuate the

discontinuity at the boundary

Side view of a polygonal surface

perceived intensity

Smooth shading

n Fix the mach band effect – remove edge discontinuity
n Compute lighting for more points on each face

Flat shading Smooth shading

Smooth shading

n Two popular methods:
n Gouraud shading (used by OpenGL)
n Phong shading (better specular highlight, not in OpenGL)

Gouraud Shading

n The smooth shading algorithm used in OpenGL
glShadeModel(GL_SMOOTH)

n Lighting is calculated for each of the polygon vertices
n Colors are interpolated for interior pixels

Gouraud Shading

n Per-vertex lighting calculation
n Normal is needed for each vertex
n Per-vertex normal can be computed by averaging the

adjust face normals

nn1 n2

n3 n4
n = (n1 + n2 + n3 + n4) / 4.0

Gouraud Shading

n Compute vertex illumination (color) before the
projection transformation

n Shade interior pixels: color interpolation (normals are
not needed)

C1

C2 C3

Ca = lerp(C1, C2) Cb = lerp(C1, C3)

Lerp(Ca, Cb)

for all scanlines

* lerp: linear interpolation

Gouraud Shading

n Linear interpolation

n Interpolate triangle color: use y distance to interpolate
the two end points in the scanline, and use x distance to
interpolate interior pixel colors

a b

v1 v2x

x = b / (a+b) * v1 + a/(a+b) * v2

Gouraud Shading Function (Pg. 433 of Hill)

for(int y = ybott; y < ytop; y++) // for each scan line
{

find xleft and xright
find colorleft and colorright
colorinc = (colorright – colorleft)/ (xright – xleft)
for(int x = xleft, c = colorleft; x < xright;

x++, c+ = colorinc)
{

put c into the pixel at (x, y)
}

}

Gouraud Shading Problem

n Lighting in the polygon interior can be inaccurate

Phong Shading

n Instead of interpolation, we calculate lighting for each
pixel inside the polygon (per pixel lighting)

n Need normals for all the pixels – not provided by user
n Phong shading algorithm interpolates the normals and

compute lighting during rasterization (need to map the
normal back to world or eye space though)

Phong Shading

n Normal interpolation

n Slow – not supported by OpenGL and most graphics
hardware

n1

n2

n3

nb = lerp(n1, n3)na = lerp(n1, n2)

lerp(na, nb)

References

n Hill, chapter 8

