CS 543: Computer Graphics
Lecture 7 (Part 11): Projection

Emmanuel Agu

3D Viewing and View Volume

m Recall: 3D viewing set up

viewing
volume

camera

tripod

Projection Transformation

View volume can have different shapes (different looks)

Different types of projection: parallel, perspective,
orthographic, etc

= Important to control

m Projection type: perspective or orthographic, etc.
m Field of view and image aspect ratio
m Near and far clipping planes

Perspective Projection

Similar to real world
Characterized by object foreshortening
Objects appear larger if they are closer to camera

Need:

m Projection center
m Projection plane

m Projection: Connecting the object
to the projection center

-

camera 1 ///:::__‘ ,,,,,,,,, -

-~

1l .

projection plane

Projection?

Projectors
R

¥— Object in 3 space

—— Projected image

Ao

VRP

COP

Orthographic Projection

m No foreshortening effect — distance from camera does not
matter

m The projection center is at infinite
m Projection calculation — just drop z coordinates

Field of View

m Determine how much of the world is taken into the picture
m Larger field of view = smaller object projection size

field of view cent’er of projection

(view angle) j \

Near and Far Clipping Planes

m Only objects between near and far planes are drawn
m Near plane + far plane + field of view = Viewing Frustum

Near plane

Far plane

Viewing Frustrum

m 3D counterpart of 2D world clip window
m Objects outside the frustum are clipped

Near plane

\Far plane

Viewing Frustum

Projection Transformation

m In OpenGL:
m Set the matrix mode to GL_PROJECTION
m Perspective projection: use

e gluPerspective(fovy, aspect, near, far) Or
e glFrustum(left, right, bottom, top, near, far)

m Orthographic:
e glOrtho(left, right, bottom, top, near, far)

gluPerspective(fovy, aspect, near, far)

m Aspect ratio Is used to calculate the window width

y
=T tow

Aspect =w /h

glFrustum(left, right, bottom, top, near, far)

m Can use this function in place of gluPerspective()

bottom ¥

| BB 5 o g

near far

glOrtho(left, right, bottom, top, near, far)

m For orthographic projection

far

Example: Projection Transformation

void display()

{
glClear(GL_COLOR_BUFFER_BIT);
gIMatrixMode (GL_PROJECTION);
glLoadldentity();
gluPerspective(fovy, aspect, near, far);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

Demo

m Nate Robbins demo on projection

Projection Transformation

m Projection — map the object from 3D space to 2D

screen

Perspective: gluPerspective()

N

Parallel: glOrtho()

Parallel Projection

m After transforming the object to the eye space, parallel
projection is relatively easy — we could just drop the Z

B Xp =X
m Yp =Y
m Zp =-d

We actually want to keep Z
— why?

Xp, Yp)

Parallel Projection

m OpenGL maps (projects) everything in the visible
volume into a canonical view volume

(xma>:,/ymax, far) (1,1, -1)

P

1 > >
(xmin, ymin, near (-1, -1, 1)

Canonical View Volume

1A YE

glOrtho(xmin, xmax, ymin,
ymax,near, far)
Projection: Need to build 4x4 matrix to do
mapping from actual view volume to CVV

Parallel Projection: glOrtho

m Parallel projection can be broken down into two parts
m Translation which centers view volume at origin

m Scaling which reduces cuboid of arbitrary dimensions to
canonical cube (dimension 2, centered at origin)

Parallel Projection: glOrtho

Translation sequence moves midpoint of view volume to
coincide with origin:

E.g. midpoint of X = (xmax + xmin)/2
Thus translation factors:

-(Xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2
And translation matrix M1:

gl 0 O - (xmax+xmin) /2§
gO 1 0 - (ymax + ymin) /2%
0 0 1 - (zmax +zmin) /27
éo 0 0 1 i

Parallel Projection: glOrtho

Scaling factor is ratio of cube dimension to Ortho view
volume dimension

Scaling factors:
2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)
Scaling Matrix M2:

2 0

3B

C _ 0 0 0=
¢ Xmax- xmin ! -
G 0 _ 0 0"
¢ ymax- ymin T
¢ 2 F
C 0 1 | OF

Zmax- zmin =+
E 0 0 1y

Parallel Projection: glOrtho

Concatenating M1xM2, we get transform matrix used by glOrtho

cIIEND 0 0 o2 gé. 0 0 - (xmax+ xmin) /20
Xmax- xmin B . F

d ! il] ot X cO 1 0 - (ymax+ ymin) /2%

; TRV) : S0 0 1 - (zmax +zmin) /27
é zmax- zmin O; gO O O 1 P

0 15

& /(xmax- xmin) 0 0 - (Xxmax+xmin) /(xmax- xmin) 9

o B LE 0 2/(y max- y min) 0 - (ymax+ min) /(ymax- min) =
G 0 0 2/(zmax- zmin) - (zmax+zmin) /(zmax- zmin)i
0 0 0 1 2

Refer: Hill, 7.6.2

Perspective Projection: Classical

m Side view:

Projection plane

y (X,Y,2)
.- Based on similar triangle
CRE P
(0,0,0) 9 'y -z
2l > Z y’ - d
AL

d
-7 - y’: Yy X——

Eye (projection center)

Perspective Projection: Classical

B So (X*,y*) the projection of point, (X,y,z) unto the near
plane N Is given as:

*:& PX Py9
(X*’y) N_PZ’N_PZE

= Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near plane at N = 1?

s (x*, y*) = (1 x1/1.5, 1x0.5/1.5) = (0.666, 0.333)

Pseudodepth

m Classical perspective projection projects (X,y) coordinates,
drops z coordinates

m But we need z to find closest object (depth testing)

m Keeping actual distance of P from eye is cumbersome and
slow

distance= \/(PXZ +P° + PZZ)

m Introduce pseudodepth: all we need is measure of which
objects are further if two points project to same (X,Yy)

P |
(X*,y*,z*):fgf PE),N d ’aPZ+bg

LENILEIE

z V4

m Choose a, b so that pseudodepth varies from —1 to 1
(canonical cube)

Pseudodepth

m Solving:

m For two conditions, z* = -1 when Pz = -N and z*

= 1 when

Pz = -F, we can set up two simultaneuous equations

m Solving:

MHGE)
F- N

Homogenous Coordinates

m Would like to express projection as 4x4 transform matrix
m Previously, homogeneous coordinates of the point P =
(Px,Py,Pz) was (Px,Py,Pz,1)
m Introduce arbitrary scaling factor, w, so that P = (wWPx,
wPy, wPz, w) (Note: w is non-zero)
m For example, the point P = (2,4,6) can be expressed as
m (2,4,6,1)
m or (4,8,12,2) where w=2
m or (6,12,18,3) where w =3
m SO0, to convert from homogeneous back to ordinary

coordinates, divide all four terms by last component and
discard 4t term

Perspective Projection

m Same for Xx. So we have:

X' = xXxxd/ -z
y=yx d/-z
z’=-d

m Put in a matrix form:

g 0 0 O%xg @ x o z-afs) 0
0 1 0 0xyl ¢y s Sa@/ o
goo 1 0%z776¢ 2z T ¢ S0P
ATRR: ¢8 IR B

OpenGL assumes d = 1, i.e. the image plane isatz = -1

Perspective Projection

m We are not done yet.

m Need to modify the projection matrix to include a and b

0] 0]
0 0]
a b
(1/-d) O

1
0
0

S N < X
1
PN < X

0
1
0
O O

We have already solved a and b

Perspective Projection

m Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate and
scale)

m SO, as in ortho to arrive at final projection matrix

m we translate by
B —(Xmax + xmin)/2 in x
B -(ymax + ymin)/2 iny
m Scale by:
B 2/(Xmax — xmin) in X
B 2/(ymax —ymin) iny

Perspective Projection

m Final Projection Matrix:

e 2N 0 Xmax + Xxmin 0 0
gxmax- Xmin Xmax- Xmin 1
C 0 2N ymax+ymin 0
¢ ymax- ymin ymax- ymin i
: 4 -(F+N) -2FN*
g F-N F- N2

0 -1 0 5

1

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Perspective Projection

m After perspective projection,

viewing frustum is also

projected into a canonical view volume (like in parallel
projection)

(1,1, -1)

I

(-1, -1, 1) >

Canonical View Volume

References

m Hill, chapter 7

