
CS 4731/543: Computer Graphics
Lecture 7 (Part III): Raytracing (Part II)

Emmanuel Agu

Where are we?

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color (clr) of light to eye along ray
glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Find Object Intersections with rc-th ray

n Much of work in ray tracing lies in finding intersections
with generic objects

n Break into two parts
n Deal with untransformed, generic (dimension 1) shape
n Then embellish to deal with transformed shape

n Ray generic object intersection best found by using implicit
form of each shape. E.g. generic sphere is

n Approach: ray r(t) hits a surface when its implicit eqn = 0
n So for ray with starting point S and direction c

1),,(222 −++= zyxzyxF

0)(
)(

=+
+=

hittSF
tStr

c
c

Ray Intersection with Generic Plane

n Generic Plane?
n Yes! Floors, walls, in a room, etc
n Generic plane is xy-plane, or z = 0
n For ray

n There exists a thit such that

n Solving,

z

z
hit c

S
t −=

0=+ hzz tS c

tStr c+=)(

Ray Intersection with Generic Plane

n Hit point Phit is given by

n Numerical example?
n Where does the ray r(t) = (4, 1, 3) + (-3, -5, -3)t hit the

generic plane?
n Soln:

n And hit point is given by

3
3

−=−=
z

z
hit c

S
t

)0,4,1(−=+ cS

)/(zzhit cSSP c−=

Ray Intersection with Generic Sphere

n Generic sphere has form

n Substituting S + ct in F(P) = 0, we get

n This is a quadratic equation of the form At2 + 2Bt + C = 0
where A = |c|2 , B = S.c and C = |S|2 - 1

0)1|(|)(2||

01||
222

2

=−+⋅+

=−+

StSt

tS

cc

c

1||)(

1),,(

01

1

2

222

222

222

−=

−++=

=−++

=++

PPF

zyxzyxF

zyx

zyx

Ray Intersection with Generic Sphere

n Solving

n If discrimant B2 – AC is negative, no solutions, ray misses
sphere

n If discriminant is zero, ray grazes sphere at one point and
hit time is –B/A

n If discriminant is +ve, two hit times t1 and t2 (+ve and –
ve) discriminant

n Numerical example? See example 12.4.2 on pg. 619

A
ACB

A
B

th
−

±−=
2

What about transformed Objects

n Generic objects are untransformed:
n No translation, scaling, rotation

n Real scene: generic objects instantiated, then transformed
by a composite matrix T,

n We can easily find the inverse transform T’
n Problem definition: We want to find ray intersection with

transformed object
n Easy by just simply finding the implicit form of the

transformed object
n May be tough to find implicit form of transformed object
n Hmmm… is there an easier way?

What about transformed Objects

n Yes
n Basic idea: if object is transformed by T, then ray–object

intersection is the same as inverse transformed ray with
generic object

n Algorithm
n Find T’ from initial T transform matrix of object
n Inverse transform the ray to get (S’ + c’t)
n Find intersection time, thit of the ray with the generic object
n Use the same thit in S + ct to identify the actual hit point

n This beautiful trick greatly simplifies ray tracing
n We only need to come up with code that intersects ray with

generic object
n Remember that programmer does transforms anyway, so we

can easily track and get T

Dealing with Transformed Objects

n Thus we want to solve the equation

n Since transform T is linear

n Thus inverse transformed ray is

0))((1 =+− tSTF c

tTSTtST)()()(111 cc −−− +=+

tSt
c
c
c

M
S
S
S

Mtr
z

y

x

z

y

x

''
~

01

)(~ 11 c+=



















+



















= −−

Dealing with transformed Objects

n For example if we have the following SDL commands in
our file

translate 2 4 9
scale 1 4 4
sphere

n The transform matrices are (see example 12.4.3, pg 621)



















=

1000
9400
4040
2001

M



















−
−
−

=−

1000
00

400
2001

4
9

4
1

4
1

1M

Organizing a Ray Tracer

n Need data structures to store ray, scene, camera, etc
n There are many ways to organize ray tracer
n Previously in C, declare struct
n These days, object-oriented religion?
n Friend once wrote ray tracer as java applet in Prof. Hill’s

class
n SDL generates scene file
n We’ve developed camera class (HW4: slide, roll, etc)
n Now just add a raytrace method to camera class

void Camera::raytrace(Scene& scn, int blockSize);

Organizing a Ray Tracer

n Call camera raytrace method from display (redisplay) function

void display(void){
glClear(GL_COLOR_BUFFER_BIT); // clear the screen
cam.raytrace(scn, blockSize);

}

n Thus ray tracer fires up and starts scanning pixel by pixel (or
block by block) till entire screen is ray traced

n Can insert previous drawOpenGL function before raytrace to
give scene preview

n Subtlety: drawOpenGL uses openGL 3D pipeline, raytrace uses
2D pipeline, so do pipeline set up inside each method

Organizing a Ray Tracer

n Need Ray class with start, dir variables and methods to set them

Class Ray{
Public:

Point3 start;
Vector3 dir;
void setStart(point3& p){start.x = p.x; etc…}
void setDir(Vector3& v){dir.x = v.x; etc…}
// other fields and methods

};

n We can now develop a basic raytrace() skeleton function

Camera raytrace() skeleton

void Camera::raytrace(Scene& scn, int blockSize)
{

Ray theRay;
Color3 clr;
theRay.setStart(eye);
// set up OpenGL for simple 2D drawing
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, nCols, 0, nRows); // whole screen is window
glDisable(GL_LIGHTING);

//begin ray tracing

Camera raytrace() skeleton

for(int row = 0; row < nRows; rows += blockSize)
for(int col = 0; col < nCols; cols += blockSize)
{

compute ray direction
theRay.setDir(<direction>); // set the ray’s direction
clr.set(scn.shade(theRay)); // find the color
glColor3f(clr.red, clr.green, clr.blue);
glRecti(col, row, col + blockSize, row + blockSize)

}
}
n shade() function does most of ray tracing work

shade() skeleton

Color3 Scene::shade(Ray& ray)
{ // return color of this ray

Color3 color; // total color to be returned
Intersection best; // data for best hit so far
getFirstHit(ray, best); // fill “best” record
if(best.numHits == 0) // did ray miss all objects?

return background;
color.set(the emissive color of object);
color.add(ambient, diffuse and specular); // add contrib.
color.add(reflected and refracted components);
return color;

}
n getFirstHit function returns first object hit by ray
n Intersection class used to store each object’s hit information

shade() skeleton

n Intersection class used to store each object’s hit information

Class Intersection{
Public:

int numHits; // # of hits at positive hit times
HitInfo hit[8]; //list of hits – may need more than 8 later
…. various hit methods

}

n hitInfo stores actual hit information for each hit
n For simple convex objects (e.g. sphere) at most 2 hits
n For torus up to 4 hits
n For boolean objects, all shapes possible so no limit to number of hits

HitInfo() class

class Intersection{
Public:

double hitTime; // the hit time
GeomObj* hitObject; // the object hit
bool isEntering; // is the ray entering or exiting
int surface; // which surface is hit?
Point3 hitPoint; // hit point
Vector3 hitNormal; // normal at hit point
…. various hit methods

}

n Surface applies if it is convenient to think of object as multiple
surfaces. E.g. cylinder cap, base and side are 3 different surfaces

getFirstHit() method

Void Scene::getFirstHit(Ray& ray, Intersection& best)
{

Intersection inter; // make intersection record
best.numHits = 0; // no hits yet

for (GeomObj* pObj = obj;pObj !=NULL;pObj = pObj->next)
{ // test each object in the scen

if(!pObj->hit(ray, inter)) // does the ray hit pObj?
continue; // miss: test the next object

if(best.numHits == 0) || // best has no hits yet
inter.hit[0].hitTime < best.hit[0].hitTime)

best.set(inter); //copy inter into best
}
n Sphere, cube, plane … are all derived from base GeomObj class

getFirstHit() method

n Polymorphism: hit called in getFirstHit() is a virtual function.
n hit is implemented differently for each object based on its implicit

equations
n So, sphere, cylinder, cube … all have their hit() functions
n Much of raytracing work lies in writing these hit() functions
n Next, hit() function for sphere

References

n Hill, chapter 12

