CS 4731/543: Computer Graphics
Lecture 7 (Part I111): Raytracing (Part I1)

Emmanuel Agu

Where are we?

Defi ne the objects and |ight sources in the scene

Set up the canera

for(int r = 0; r < nRows; r+= bl ockSi ze) {

for(int ¢ = 0; ¢ < nCols; c+= bl ockSi ze){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. ldentify closest object intersection
4. Conpute the “hit point” where the ray hits the
obj ect, and normal vector at that point

5. Find <color (clr) of l[ight to eye along ray
gl Collar 3f (clin. red, clr.gneen, clr.hblue);
gl Recti(c, r, ¢ + blockSize, r + blockSize);

Find Object Intersections with rc-th ray

= Much of work in ray tracing lies in finding intersections
with generic objects

m Break into two parts
m Deal with untransformed, generic (dimension 1) shape
m Then embellish to deal with transformed shape

m Ray generic object intersection best found by using implicit
form of each shape. E.g. generic sphere is

F(X,y,2)=x"+y*+z°-1

m Approach: ray r(t) hits a surface when its implicit egn = 0
m So for ray with starting point S and direction c

r(t) =S+ct
F(S+cty) =0

Ray Intersection with Generic Plane

Generic Plane?

Yes! Floors, walls, in a room, etc
Generic plane is xy-plane, orz =0
For ray

r(t)=S+ct
m There exists a t,;; such that
S, +c,t, =0

m Solving,

S,
C

z

1:hit

Ray Intersection with Generic Plane

m Hit point P,;, Is given by

P =5S-¢c(S,/c,)

= Numerical example?

m Where does the ray r(t) = (4, 1, 3) + (-3, -5, -3)t hit the
generic plane?

m Soln:

= And hit point is given by
S+c=(,-4,0)

Ray Intersection with Generic Sphere

m Generic sphere has form
Kbz
X°+y°+2z°-1=0
F(X,y,2)=x"+y*+7°-1
F(P)=|P[-1
m Substituting S + ctin F(P) = 0, we get
|S+ct|F-1=0
lcft*+2(Sx)t+(|SF-1D)=0

m This is a quadratic equation of the form At + 2Bt + C =0
where A =|c|?, B=S.c and C=|S]*?-1

Ray Intersection with Generic Sphere

m Solving

B _+B’- AC
AE

t, =

m If discrimant B®> — AC is negative, no solutions, ray misses
sphere

m If discriminant is zero, ray grazes sphere at one point and
hit time is —B/A

m If discriminant is +ve, two hit times tl and t2 (+ve and —
ve) discriminant

m Numerical example? See example 12.4.2 on pg. 619

What about transformed Objects

m Generic objects are untransformed:
m No translation, scaling, rotation

m Real scene: generic objects instantiated, then transformed
by a composite matrix T,

m We can easily find the inverse transform T’

m Problem definition: We want to find ray intersection with
transformed object

m Easy by just simply finding the implicit form of the
transformed object

m May be tough to find implicit form of transformed object
= Hmmm... is there an easier way?

What about transformed Objects

m Yes

m Basic idea: if object is transformed by T, then ray—object
Intersection is the same as inverse transformed ray with
generic object

m Algorithm

m Find T’ from initial T transform matrix of object

m Inverse transform the ray to get (S’ + c’t)

= Find intersection time, t,;, of the ray with the generic object
m Use the same t,;, In S + ct to identify the actual hit point

m This beautiful trick greatly simplifies ray tracing

= We only need to come up with code that intersects ray with
generic object

m Remember that programmer does transforms anyway, so we
can easily track and get T

Dealing with Transformed Objects

m Thus we want to solve the equation
F(T*(S+ct))=0
m Since transform T is linear
T (S+ct)=(T'S)+(T o)t

m Thus inverse transformed ray is
5, 0 &, 0
G117 iy

| oy E B EARE
7 (t) =M _lgsy T+ MY =S4t

Z = QCZ+
15 %0;

Dealing with transformed Objects

m For example if we have the following SDL commands in
our file

translate 2 4 9
scale 1 4 4
sphere

m The transform matrices are (see example 12.4.3, pg 621)

(a;é. O O 29 éﬁ' 0 0 _29
A E 1,60 § 0 -4
%0 0 4 9 G0 o L .297F

E 4 4 -

éO 0 0 14 go 0 0 1

Organizing a Ray Tracer

Need data structures to store ray, scene, camera, etc
There are many ways to organize ray tracer
Previously in C, declare struct

These days, object-oriented religion?

Friend once wrote ray tracer as java applet in Prof. Hill’s
class

SDL generates scene file
m We’'ve developed camera class (HW4: slide, roll, etc)
m Now just add a raytrace method to camera class

voi d Canera::raytrace(Scene& scn, int blockSize);

Organizing a Ray Tracer

m Call camera raytrace method from display (redisplay) function

voi d di spl ay(voi d){
gl ear(E@_COOR BUFFER BIT); // clear the screen
cam raytrace(scn, bl ockSize);

m Thus ray tracer fires up and starts scanning pixel by pixel (or
block by block) till entire screen is ray traced

m Can insert previous drawOpenGL function before raytrace to
give scene preview

m Subtlety: drawOpenGL uses openGL 3D pipeline, raytrace uses
2D pipeline, so do pipeline set up inside each method

Organizing a Ray Tracer
m Need Ray class with start, dir variables and methods to set them

Cl ass Ray{
Publ i c:
Point3 start;
Vector3 dir;
void setStart(point3& p){start.x = p.x; etc.}
void setDir(Vector3& v){dir.x = v.Xx; etc..}
/] other fields and net hods

i

m We can now develop a basic raytrace() skeleton function

Camera raytrace() skeleton

voi d Canera::raytrace(Scene& scn, int blockSi ze)
{

Ray t heRay;

Col or3 clr;

t heRay. set Start (eye);

/] set up Open@E for sinple 2D draw ng

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();:

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();:

gluOtho2D(0, nCols, 0, nRows); // whole screen is w ndow

gl D sabl e(A@_LI GHTI NG ;

[/ begin ray tracing

}

Camera raytrace() skeleton

for(int row = 0; row < nRows; rows += bl ockSi ze)
for(int col = 0; col < nCols; cols += bl ockSi ze)
{
conpute ray direction
theRay.setDir(<direction>); // set the ray s direction
clr.set(scn.shade(theRay)); // find the col or
gl Color3f(clr.red, clr.green, clr.blue);
gl Recti(col, row, col + DblockSize, row + bl ockSi ze)

m shade() function does most of ray tracing work

shade() skeleton

Col or 3 Scene: : shade(Ray& r ay)

{ [/ return color of this ray
Col or3 color; // total color to be returned
| ntersection best; // data for best hit so far
getFirstH t(ray, best); // fill “best” record
| f(best.nunHits == 0) // did ray mss all objects?

return background;

col or.set(the em ssive col or of object);
col or. add(anbi ent, diffuse and specular); // add contrib.
color.add(refl ected and refracted conponents);
return col or;

}

m getFirstHit function returns first object hit by ray
m Intersection class used to store each object’s hit information

shade() skeleton

m Intersection class used to store each object’s hit information

Cl ass Intersection{
Publ i c:
Int nunHi ts; [/ # of hits at positive hit tines
Htinfo hit[8]; //list of hits — nmay need nore than 8 | ater
various hit nethods

}

m hitInfo stores actual hit information for each hit

m For simple convex objects (e.g. sphere) at most 2 hits

m For torus up to 4 hits

m For boolean objects, all shapes possible so no limit to number of hits

HitInfo() class

cl ass Intersection{

Publ i c:
doubl e hit Ti ne; [/
Geontbj * hitQoject; [/
bool i sEntering; [/
I nt surface,; [/
Poi nt 3 hit Poi nt; [/
Vect or 3 hit Nor nal ; [/

vari ous hit et hods

the hit tine

the object hit

Is the ray entering or exiting
whi ch surface is hit?

hit poi nt

normal at hit point

m Surface applies if it is convenient to think of object as multiple
surfaces. E.g. cylinder cap, base and side are 3 different surfaces

getFirstHit() method

Voi d Scene::.getFirstH t(Ray& ray, |Intersection& best)
{

| ntersection inter; [/ nake Intersection record
best.nunH ts = O; /[l no hits yet

for (Geombj* pChj = obj;pOoj !'=NULL; pCbj = pQObj - >next)
{ /Il test each object In the scen
1 f(!'pQbj->hit(ray, inter)) // does the ray hit pQCbj?
cont i nue; // mss: test the next object
| f(best.nunHits == 0) || /'l best has no hits yet
inter.hit[0].hitTime < best.hit[0]. hitTine)
best.set(inter); //copy inter into best

}

m Sphere, cube, plane ... are all derived from base GeomODbj class

getFirstHit() method

m Polymorphism: hit called in getFirstHit() is a virtual function.

m hit is implemented differently for each object based on its implicit
equations

m S0, sphere, cylinder, cube ... all have their hit() functions
m Much of raytracing work lies in writing these hit() functions
m Next, hit() function for sphere

References

= Hill, chapter 12

