CS 4731/543: Computer Graphics

Lecture 7 (Part 1): Raster Graphics: Polygons & Antialiasing

Emmanuel Agu

So Far...

m Raster graphics:

m Line drawing algorithms (simple, Bresenham’s)
m Today:

m Defining and filling regions

m Polygon drawing and filling

= Antialiasing

Defining and Filling Regions of Pixels

m First, understand how to define and fill any defined regions
m Next, how to fill regions bounded by a polygon

Defining and Filling Regions of Pixels

m Methods of defining region
m Pixel-defined: specifies pixels in color or geometric range
m Symbolic: provides property pixels in region must have

m Examples of symbolic:
e Closeness to some pixel
= Within circle of radius R
= Within a specified polygon

Pixel-Defined Regions

m Definition: Region R is the set of all pixels having color C
that are connected to a given pixel S

m 4-adjacent: pixels that lie next to each other horizontally
or vertically, NOT diagonally

m 8-adjacent: pixels that lie next to each other horizontally,
vertically OR diagonally

m 4-connected: if there is unbroken path of 4-adjacent
pixels connecting them

m 8-connected: unbroken path of 8-adjacent pixels
connecting them

Recursive Flood-Fill Algorithm

Recursive algorithm

Starts from initial pixel of color, i nt Col or
Recursively set 4-connected neighbors to newCol or
Flood-Fill: floods region with newCol or

Basic idea:

m start at “seed” pixel (X, y)

m If (X, y) has color intColor, change it to newColor
m Do same recursively for all 4 neighbors

Recursive Flood-Fill Algorithm
m Note: getPixel(X,y) used to interrogate pixel color at (X, y)

void floodFill (short x, short y, short intColor)
{
| f (getPixel (x, y) == 1ntColor)
{
set Pi xel (x, Vy);
floodFill(x — 1, vy, intColor); // left pixel
floodFill(x + 1, vy, intColor); // right pixel
floodFill(x, vy + 1, intColor); // down pixel
floodFill (x, v — 1, intColor); // fill up

Recursive Flood-Fill Algorithm

m This version defines region using intColor
m Can also have version defining region by boundary

m Recursive flood-fill is somewhat blind and some pixels may
be retested several times before algorithm terminates

m Region coherence is likelihood that an interior pixel mostly
likely adjacent to another interior pixel

m Coherence can be used to improve algorithm performance
®m A run is a group of adjacent pixels lying on same
m EXxploit runs(adjacent, on same scan line) of pixels

Note: algorithm most efficient if there is span coherence (pixels on
scanline have same value) and scan-line coherence (consecutive

scanlines are similar)

Region Filling Using Coherence

m Example: start at s. initial seed

a) | 1 b)
| EEEEE

| 13=]

stack:

I

| g

L]

Pseudocode:

Push address of seed pixel onto stack
whil e(stack i s not enpty)

Pop stack to provi de next seed

Fill in run defined by seed

| n row above find reachable interior runs
Push address of their rightnost pixels

Do sane for row bel ow current run

Filling Polygon-Defined Regions

m Problem: Region defined by Polygon P with vertices
Pi = (Xi, Y1), for i — 1...N, specifying sequence of P’s vertices

P1 P2

P7 P3

PS5

P6 P4

Filling Polygon-Defined Regions

m Solution: Progress through frame buffer scan line by scan
line, filling in appropriate portions of each line

m Filled portions defined by intersection of scan line and
polygon edges

®m Runs lying between edges inside P are filled

Filling Polygon-Defined Regions
m Pseudocode:

for(each scan Line L)

{
Find intersections of L wmth all edges of P
Sort the intersections by iIncreasing x-val ue

Fill pixel runs between all pairs of
| nt ersecti ons

Filling Polygon-Defined Regions

m Example: scan line y = 3 intersects 4 edges e3, e4, e5, €6
m Sort x values of intersections and fill runs in pairs
m Note: at each intersection, inside-outside (parity), or vice versa

A
P1 P2

P3

P6 P4

Filling Polygon-Defined Regions

= What if two polygons A, B share an edge?

m Algorithm behavior could result in:
m Setting edge first in one color and the another
m Drawing edge twice too bright

s Make Rule: when two polygons share edge, each polygon
owns its left and bottom edges

m E.g. below draw shared edge with color of polygon B

A

Read: Hill: 9.7.1, pg 481

Filling Polygon-Defined Regions

m How to handle cases where scan line intersects with polygon
endpoints to avoid wrong parity?
m Solution: Discard intersections with horizontal edges and with

upper endpoint of any edge See 0
LE =T

See O
~

See 1
/

See 2 Hill: 9.7.1, pg. 482

Antialiasing

m Raster displays have pixels as rectangles
m Aliasing: Discrete nature of pixels introduces “jaggies”

a) b)

e - |

K i 1

||||iiii @

Antialiasing

m Aliasing effects:
m Distant objects may disappear entirely
m Objects can blink on and off in animations
m Antialiasing techniques involve some form of blurring to
reduce contrast, smoothen image
m Three antialiasing techniques:
m Prefiltering
m Postfiltering
m Supersampling

Prefiltering

m Basic idea:
m compute area of polygon coverage
m use proportional intensity value
m Example: if polygon covers ¥4 of the pixel
m use ¥ polygon color
m add it to % of adjacent region color

m Cons: computing pixel coverage can be time consuming

Supersampling

m Useful if we can compute color of any (X,y) value on the
screen

Increase frequency of sampling

Instead of (X,y) samples in increments of 1
Sample (x,y) In fractional (e.g. ¥2) increments
Find average of samples

Example: Double sampling = increments of ¥2 = 9 color
values averaged for each pixel

} Average 9 (X, y) values
to find pixel color

Postfiltering

Supersampling uses average
Gives all samples equal importance

Post-filtering: use weighting (different levels of importance)
Compute pixel value as weighted average
Samples close to pixel center given more weight

Sample weighting

1/716 |1/16 |1/16

1716 |1/2 1716

1716 |1/16 |1/16

Antialiasing in OpenGL

Many alternatives

Simplest: accumulation buffer

Accumulation buffer: extra storage, similar to frame buffer
Samples are accumulated

When all slightly perturbed samples are done, copy results
to frame buffer and draw

Antialiasing in OpenGL

m First initialize:
m glutlnitD splayMde(GLUT_SI NGLE | GLUT_RGB |
GLUT_ACCUM | G.UT_DEPTH);
m Zero out accumulation buffer
= gl d ear (GLUT_ACCUM BUFFER BI T);

m Add samples to accumulation buffer using
m gl Accun()

Antialiasing in OpenGL

m Sample code
m jitter[] stores randomized slight displacements of camera,

m factor, f controls amount of overall sliding

gl A ear (G._ACCUM BUFFER BI T) ;
for(int 1=0;1 < 8; |++)

{
camslide(f*jitter[i], f*jitter[i].y, 0O);
di splay();
gl Accun{ GL_ACCUM 1/8.0); Jitter.h
} -0.3348, 0.4353

gl Accun{ G._RETURN, 1.0); 0.2864, -0.3934

References

= Hill, chapter 9

