CS 4731/543: Computer Graphics

Lecture 2 (Part 1V): Introduction to 3D Modeling

Emmanuel Agu

3D Modeling

m Overview of OpenGL modeling (Hill 5.6)
m Modeling: create 3D model of scene/objects

@ OpenGL commands

Coordinate systems (left hand, right hand, openGL-way)
Basic shapes (cone, cylinder, etc)
Transformations/Matrices

Lighting/Materials

Synthetic camera basics

View volume

Projection

m GLUT models (wireframe/solid)
m Scene Description Language (SDL): 3D file format

Coordinate Systems

= Tip: sweep fingers x-y: thumb is z

Y A
A 47
» X > X
+Z
6 Ty Left hand coordinate system

_ _ *Not used in this class and
Right hand coordinate system «Not in OpenGL

Rotation Direction

= Which way is +ve rotation
m Look in —ve direction (into +ve arrow)
m CCW is +ve rotation

il

532

3D Modeling: GLUT Models

® Two main categories:
m Wireframe Models
m Solid Models

m Basic Shapes
m Cylinder: glutWireCylinder(), glutSolidCylinder()
m Cone: glutWireCone(), glutSolidCone()
m Sphere: glutWireSphere(), glutSolidSphere()
m Cube: glutWireCube(), glutSolidCube()

m More advanced shapes:
m Newell Teapot: (symbolic)
m Dodecahedron, Torus

GLUT Models: glutwireTeapot()

m The famous Utah Teapot has become an unofficial
computer graphics mascot

E

glutWireTeapot(0.5) -

Create a teapot with size 0.5, and position
its center at (0,0,0)
Also glutSolidTeapot()

Again, you need to apply transformations to position it at the right spot

3D Modeling: GLUT Models

m Glut functions actually
m generate sequence of points that define corresponding shape
m centered at 0.0
s Without GLUT models:
m Use generating functions
m More work!!
m What does it look like?
m Generates a list of points and polygons for simple shapes
m Spheres/Cubes/Sphere

Cylinder Algorithm

glBegin(GL_QUADS)
For each A = Angles{
glVertex3f(R*cos(A), R*sin(A), 0);
glVertex3f(R*cos(A+DA), R*sin(A+DA), 0)
glVertex3f(R*cos(A+DA), R*sin(A+DA), H)
glVertex3f(R*cos(A), R*sin(a), H)
b

// Make Polygon of Top/Bottom of cylinder

3D Transforms

m Scale:

m glScaled(sx, sy, sz) - scale object by (sx, sy, sz)
m Translate:

m glTranslated(dx, dy, dz) - translate object by (dx, dy, dz)
m Rotate:

m glRotated(angle, ux, uy, uz) — rotate by angle about an axis
passing through origin and (ux, uy, uz)

m Nate Robbins Demo!

Example: Table leg modeled with OpenGL

// define table leg

void tableLeg(double thick, double len){
glTranslated(O, len/2, 0);
glScaled(thick, len, thick);
glutSolidCube(1.0);

}

What does OpenGL do with transformation commands?

m OpenGL

m Creates matrices for each transform (scale, translate, rotate)
m Multiplies matrices together to form 1 combined matrix
m Combined geometry transform matrix called modelview matrix

OpenGL Matrices

Graphics pipeline: vertices goes through series of operations

projection
/ maltrix
I(_,__—————_

—» VM 2 25 —»1 clip 2 Vs —+=| ‘

\

modelview
matrix

viewport
matrix

OpenGL Matrices/Pipeline

m OpenGL uses 3 matrices (simplified) for geometry:
m Modelview matrix:
m Projection matrix:
m Viewport matrix:

= Modelview matrix:
m combination of modeling matrix M and Camera transforms V

Other OpenGL matrices include texture and color matrices
glMatrixMode command selects matrix mode
May initialize matrices with glLoadldentity()

glMatrixMode parameters: GL_MODELVIEW,
GL_PROJECTION, GL_TEXTURE, etc

OpenGL matrix operations are 4x4 matrices
m Graphics card: fast 4x4 multiplier -> tremendous speedup

View Volume

m Side walls determined by window borders

m Other walls determined by programmer-defined
m Near plane
m Far plane

m Convert 3D models to 2D:

m Project points/vertices inside view volume unto view window
using parallel lines along z-axis

VIEW '|'I[3IFE

—_— T
¥ : | Sl [
W - - = - 1
ol

Projection

m Different types of projections?
m Different view volume shapes
m Different visual effects

m Example projections
m Parallel
m Perspective

m Parallel is simple

m Will use for this intro, expand later

OpenGL Matrices/Pipeline

m Projection matrix:

m Scales and shifts each vertex in a particular way.

m View volume lies inside cube of -1 to 1

m Reverses sense of z: increasing z = increasing depth

m Effectively squishes view volume down to cube centered at 1
m Clipping: (in 3D) then eliminates portions outside view volume
® Viewport matrix:

m Maps surviving portion of block (cube) into a 3D viewport

m Retains a measure of the depth of a point

Lighting and Object Materials

m Light components:
m Diffuse, ambient, specular
m OpenGL: glLightfv(), glLightf()
m Materials:
m OpenGL: glMaterialfv(), glMaterialf()

Synthetic Camera -

m Define:
m Eye position
= LookAt point
m Up vector (if spinning: confusing)
m Programmer knows scene, chooses:
m eye
m lookAt
m Up direction usually set to (0,1,0)
m OpenGL:
m gluLookAt(eye.Xx, eye.y, eye.z, look.x, look.y, look.z, up.x,
up.y, up.z)

Hierarchical Transforms Using OpenGL

= Two ways to model
m Immediate mode (OpenGL)
m Retained mode (SDL)

m Graphical scenes have object dependency,
m Many small objects
m Attributes (position, orientation, etc) depend on each other

A Robot Hammer! il / hammer

N

_—P

lower arm —)

<«— Dase

Hierarchical Transforms Using OpenGL

m Object dependency description using tree structure

Root node

Base

v

Lower arm

l

Upper arm

Leaf node

l

Hammer

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
... hodes

Hierarchical representation
is known as Scene Graph

Transformations

m Two ways to specify transformations:

m (1) Absolute transformation: each part of the object is

transformed independently relative to the origin

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);

Relative Transformation

A better (and easier) way:
(2) Relative transformation: Specify the transformation for each object

relative to its parent

Step 1: Translate base and
Its descendants by (5,0,0); —

A
!
!
T
iy,

”

A/

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

Relative Transformation

m Represent relative transformation using scene graph

i ,

Base {----------- Translate (5,0,0)

Lower arm

i

Upper arm

i

Hammer

- Rotate (-90) about its local y

Apply all the way
down

Apply all the way
down

Hierarchical Transforms Using OpenGL

m Translate base and all its descendants by (5,0,0)
m Rotate the lower arm and its descendants by -90 degree about the local y

gIMatrixMode(GL_MODELVIEW);
11 glLoadldentity();

Base
i ... /1 setup your camera
LOWT arm glTranslatef(5,0,0);
Draw_base();
Upper arm
l glRotatef(-90, 0, 1, 0);
Hammer Draw_lower _arm();

Draw_upper_arm();
Draw_hammer();

Hierarchical Models

Two important calls:
m glPushMatrix(): load transform matrix with following matrices

m glPopMatrix(): restore transform matrix to what it was before
glPushMatrix()

If matrix stack has M1 at the top, after glPushMatrix(),
positions 1 and 2 on matrix stack have M1

If M1 is at the top and M2 is second in position, glPopMatrix()
destroys M1 and leaves M2 at the top

To pop matrix without error, matrix must have depth of at
least 2
Possible depth of matrices vary.

m Modelview matrix allows 32 matrices

m Other matrices have depth of at least 2

Example: Table modeled with OpenGL

// define table leg

void tableLeg(double thick, double len){
glPushMatrix();
glTranslated(O, len/2, 0);
glScaled(thick, len, thick);
glutSolidCube(1.0);
glPopMatrix();

}

// note how table uses tablelLeg-

void table(double topWid, double topThick, double legThick, double legLen){
// draw the table - a top and four legs
glPushMatrix();
glTranslated(O, legLen, 0);

Example: Table modeled with OpenGL

scaled(topWid, topThick, topWid);
glutSolidCube(1.0);
glPopMatrix();

double dist = 0.95 * topWid/2.0 - legThick /7 2.0;
glPushMatrix();
glTranslated(dist, O, dist);
tableLeg(legThick, legLen);
glTranslated(O, O, -2*dist);
tableLeg(legThick, legLen);
glTranslated(-2*dist, 0, 2*dist);
tableLeg(legThick, legLen);
glTranslated(O, O, -2*dist);
tableLeg(legThick, legLen);
glPopMatrix();

Example: Table modeled with OpenGL

// translate and then call

glTranslated(0.4, 0, 0.4);
table(0.6, 0.02, 0.02, 0.3); // draw the table

SDL

mlmmediate mode graphics with openGL: a little tougher
mSDL: Example language for retained mode graphics
mRetained mode application usually has:

mReads file from disk

mParses objects/scene into data structure

mMakes drawing pass to render scene in data structure
mAdvantage: Parser and Render stay same, just change input file
mSDL makes hierarchical modeling easy
mSDL data structure format

background [|0 sphere cone cube sphere

uhiL'CI _ @ ‘ ' - > - —>1

} — | M, Vi, M. R e
others ‘ " 1 | — | —

| { 1 olafa] [olafa] [e[ala] [o]1]o]

light | ¢«

gnt | ¢ N

position ’? 9 ‘TI_'

color |11 [1

SDL

m Easy interface to use
m 3 steps:

m Step One
m #include “sdl.h”
m Add sdl.cpp to your make file/workspace
m Step Two:
m Instantiate a Scene Object
m Example: Scene scn;
m Step Three:
m scn.read(“your scene file.dat”); // reads your scene
= sch. makeLightsOpenGL(); // builds lighting data structure
m scn. drawSceneOpenGL(); // draws scene using OpenGL

Example: Table with SDL

def leg{push translate 0 .15 O scale .01 .15 .01 cube pop}

def table{

push translate 0 .3 0 scale .3 .01 .3 cube pop
push

translate .275 0 .275 use leg

translate O O -.55 use leg

translate -.55 0 .55 use leg

translate 0 O -.55 use leg pop

}

push translate 0.4 0 0.4 use table pop

Examples

m Hill contains useful examples on:
m Drawing fireframe models (example 5.6.2)
m Drawing solid models and shading (example 5.6.3)
m Using SDL in a program (example 5.6.4)
m Homework 2:
m involves studying these examples
m Work with SDL files in OpenGL
m Start to build your own 3D model (castle)

References

Hill, 5.6, appendix 3

Angel, Interactive Computer Graphics using OpenGL (3™
edition)
Hearn and Baker, Computer Graphics with OpenGL (3" edition)

