
CS 543: Computer Graphics
Lecture 13: Raytracing (Part 5)

Emmanuel Agu

Today..

n Cube and mesh hit() functions
n Antialiasing

Intersection with Cube (or convex Polyhedra)

n Cubes, Meshes and convex polyhedra used a lot in graphics
n Start with generic cube (center at origin, corners at ±1, ±1, ±1)
n All 8 combinations of +1 and –1 are used (i.e. 23)
n Intersection algorithm is essentially Cyrus-Beck clipping
n Six faces lie on planes shown below

(0,0,-1)(0,0,-1)z=-1back5

(0,0,1)(0,0,1)z=1front4

(-1,0,0)(-1,0,0)x=-1left3

(1,0,0)(1,0,0)x=1right2

(0,-1,0)(0,-1,0)y=-1bottom1

(0,1,0)(0,1,0)y=1top 0

SpotOutward NormalEquationNamePlane

Recall: Candidate Interval (CI)

n Define Candidate Interval (CI) as time interval during which
edge might still be inside CVV. i.e. CI = t_in to t_out

n Conversely: values of t outside CI = edge is outside CVV

n Previously used CI initialized to [0,1], now can exceed this
range

n Initialize CI to (-infinity, infinity)

0 1

t
t_in t_out

CI

Candidate Interval (CI)

Example to illustrate search for t_in, t_out

Note: CVV is different shape. This is just example

Summary of CI

n Track CI
n As we test each plane, chop away at interval

n Try to reduce t_out
n Try to increase t_in

n If ever t_out < t_in, STOP!!
n Actual testing is done by

if(the ray is entering at t_hit)
t_in = max(t_in, t_hit)

else if(the ray is exiting at t_hit)
t_out = min(t_out, t_hit)

Testing against Planes

n To solve for intersection times with each plane, put ray
equation into implicit equation for plane

n And t_hit is given as

n Where numer = m.(B - S)
n And denom = m.c

0)(
)()(

=−+•
−•=

BtS
BPPF

cm
m

denom
numer

t =

Testing against Planes

n Where numer = m.(B - S), denom = m.c
n If denom = 0, ray is parallel to plane, numer determines if

it is wholly inside or outside
n numer > 0, wholly inside
n numer < 0, wholly outside

n If denom > 0, means ray is passing into outside half of
plane, since m.c are less than 90 degrees apart

n If denom < 0, means ray is passing into inside half of
plane, since m.c are less than 90 degrees apart

Testing against Planes

n Can easily show that numer and denom can be found
using the following short forms

-cz1 + Sz5

cz1 - Sz4

-cx1 - Sx3

cx1 - Sx2

-cy1 + Sy1

cy1 - Sy0

denomnumerPlane

Intersection with Convex Polyhedra

n Implementation for cube function is nicely laid out in figure 14.23 of
text. Please read it..

n We’ve seen enough hit functions to last you a life time
n Read on your own..
n For convex polyhedra, instead of 6 faces for cube, store i faces
n Find normal to face i, mi and hit point Bi. Use loop then as

for(int i=0;i < N;i++)
{

numer = dot3D(mi, Bi - S)
denom = dot3D(mi, c)
… continue same as cube

}

Intersection with Mesh

n We can then extend method to develop hit function for a mesh
n Retrieve normal of mesh and vertex 0
n Read mesh intersection part from book (1/2 page)

for(int f=0;f < numFaces;f++)
{

Vector3 diff;
Vector3 normal(norm[face[f].vert[0].normIndex);
Point3 point(pt[face[f].vert.vertIndex);
form diff = point – genRay.start
numer = dot3D(normal, diff)
denom = dot3D(normal, genRay.dir)
… continue same as cube

}

References

n Hill, chapter 14

