CS 543: Computer Graphics
Lecture 13: Raytracing (Part 5)

Emmanuel Agu

Today..

m Cube and mesh hit() functions
m Antialiasing

Intersection with Cube (or convex Polyhedra)

Cubes, Meshes and convex polyhedra used a lot in graphics
Start with generic cube (center at origin, corners at 1, 1, £1)
All 8 combinations of +1 and —1 are used (i.e. 23)

Intersection algorithm is essentially Cyrus-Beck clipping

Six faces lie on planes shown below

Plane Name Equation Outward Normal Spot

0] top y=1 (0,1,0) (0,1,0)
1 bottom y=-1 (0,-1,0) (0,-1,0)
2 right Xx=1 (1,0,0) (1,0,0)
3 left X=-1 (-1,0,0) (-1,0,0)
4 front z=1 (0,0,1) (0,0,1)
5 back z=-1 (0,0,-1) (0,0,-1)

Recall: Candidate Interval (CI)

Define Candidate Interval (Cl) as time interval during which
edge might still be inside CVV. i.e. Cl =t _in to t out

0 Cl 1
TTinnnnnunnnnnnnnnnnuinnnghs

t In t out
Conversely: values of t outside Cl = edge is outside CVV

Previously used CI initialized to [0,1], now can exceed this
range

Initialize CI to (-infinity, infinity)

Candidate Interval (CI)

Example to illustrate search for t_in, t out

Note: CVV is different shape. This is just example

@.2
' @()

e e g Line tes I tout

0 0 0.83

%1 f: / IIIII o II', intersects [A0 | 0 0.66
____,-—’. - / l/-f 'III III (ﬂ _4 ‘ 7
== C /@66 | | <

y | : -) 0 0.66
._f'r I|I I', . 22
@83 E JL -7 3 0 0.66

& 4 0.2 0.66

intersects L, o ’ 5 0.28 0.66
@3.4 R

Summary of CI

m Track CI

m As we test each plane, chop away at interval
m Try to reduce t_out
m Try to increase t_in

m Ifevert out <t Iin, STOPI!!
m Actual testing is done by

1f(the ray I1s entering at t_hit)
t in=mx(t _in, t _hit)

else if(the ray is exiting at t_hit)
t out = mn(t _out, t _hit)

Testing against Planes

m To solve for intersection times with each plane, put ray
equation into implicit equation for plane

F(P)=m- (P- B)
m- (S+ct- B)=0
m And t_hit Is given as

. numer

=
denom

= Where numer = m.(B - S)
@ And denom = m.c

Testing against Planes

® Where numer =m.(B - S), denom = m.c

m If denom = O, ray is parallel to plane, numer determines if
It is wholly inside or outside
= numer > 0, wholly inside
m numer < 0, wholly outside

m If denom > 0, means ray is passing into outside half of
plane, since m.c are less than 90 degrees apart

m If denom < 0, means ray is passing into inside half of
plane, since m.c are less than 90 degrees apart

Testing against Planes

m Can easily show that numer and denom can be found

using the following short forms

Plane numer denom
0] 1- Sy Cy
1 1+ Sy -Ccy
2 1- Sx CX
3 1- Sx -CX
4 1- Sz cz
) 1+ Sz -CZ

Intersection with Convex Polyhedra

m Implementation for cube function is nicely laid out in figure 14.23 of
text. Please read it..

We’ve seen enough hit functions to last you a life time

Read on your own..

For convex polyhedra, instead of 6 faces for cube, store i faces
Find normal to face i, m; and hit point B,. Use loop then as

for(int 1=0;i < Ni++)

{
numer = dot3D(m, B,- S)
denom = dot 3D(m,, c)
... continue same as cube

Intersection with Mesh

We can then extend method to develop hit function for a mesh
Retrieve normal of mesh and vertex O
Read mesh intersection part from book (1/2 page)

for(int f=0;f < nunfaces;f++)

{

Vector3 diff;

Vector3 normal (nornfface[f].vert[O].norm ndex);
Poi nt3 point(pt[face[f].vert.vertlndex);
formdiff = point - genRay. start

nuner = dot3D(normal, diff)

denom = dot 3D(nor mal , genRay. dir)
... continue same as cube

References

m Hill, chapter 14

