
CS 543: Computer Graphics
Lecture 10 (Part III): Curves
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So Far…

n Dealt with straight lines and flat surfaces
n Real world objects include curves
n Need to develop:

n Representations of curves
n Tools to render curves



Curve Representation: Explicit

n One variable expressed in terms of another
n Example:

n Works if one x-value for each y value
n Example: does not work for a sphere

n Rarely used in CG because of this limitation
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Curve Representation: Implicit

n Algebraic: represent 2D curve or 3D surface as zeros of a 
formula

n Example: sphere representation

n May restrict classes of functions used
n Polynomial: function which can be expressed as linear 

combination of integer powers of x, y, z
n Degree of algebraic function: highest sum of powers in 

function
n Example: yx4 has degree of 5
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Curve Representation: Parametric

n Represent 2D curve as 2 functions, 1 parameter

n 3D surface as 3 functions, 2 parameters

n Example: parametric sphere
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Choosing Representations

n Different representation suitable for different applications
n Implicit representations good for:

n Computing ray intersection with surface
n Determining if point is inside/outside a surface

n Parametric representation good for:
n Breaking surface into small polygonal elements for rendering
n Subdivide into smaller patches

n Sometimes possible to convert one representation into 
another



Continuity

n Consider parametric curve

n We would like smoothest curves possible
n Mathematically express smoothness as continuity (no jumps)
n Defn: if kth derivatives exist, and are continuous, curve has 

kth order parametric continuity denoted Ck
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Continuity

n 0th order means curve is continuous
n 1st order means curve tangent vectors vary continuously, etc
n We generally want highest continuity possible
n However, higher continuity = higher computational cost
n C2 is usually acceptable



Interactive Curve Design

n Mathematical formula unsuitable for designers
n Prefer to interactively give sequence of control points 
n Write procedure:

n Input: sequence of points
n Output: parametric representation of curve



Interactive Curve Design

n 1 approach: curves pass through control points (interpolate)
n Example: Lagrangian Interpolating Polynomial
n Difficulty with this approach: 

n Polynomials always have “wiggles”
n For straight lines wiggling is a problem

n Our approach: merely approximate control points (Bezier, B-
Splines)



De Casteljau Algorithm

n Consider smooth curve that approximates sequence of 
control points [p0,p1,….]

n Blending functions: u and (1 – u) are non-negative and 
sum to one
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De Casteljau Algorithm

n Now consider 3 points
n 2 line segments, P0 to P1 and P1 to P2
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De Casteljau Algorithm
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Example: Bezier curves with 3, 4 control points



De Casteljau Algorithm
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Blending functions for degree 2 Bezier curve
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Note: blending functions, non-negative, sum to 1



De Casteljau Algorithm

n Extend to 4 points P0, P1, P2, P3

n Repeated interpolation is De Casteljau algorithm
n Final result above is Bezier curve of degree 3
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De Casteljau Algorithm

n Blending functions for 4 points
n These polynomial functions called Bernstein’s polynomials
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De Casteljau Algorithm

n Writing coefficient of blending functions gives Pascal’s 
triangle
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In general, blending function for k Bezier curve has form
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De Casteljau Algorithm

n Can express cubic parametric curve in matrix form
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Subdividing Bezier Curves

n OpenGL renders flat objects 
n To render curves, approximate by small linear segments
n Subdivide curved surface to polygonal patches
n Bezier curves useful for elegant, recursive subdivision
n May have different levels of recursion for different parts of 

curve or surface
n Example: may subdivide visible surfaces more than hidden 

surfaces



Subdividing Bezier Curves

n Let (P0… P3) denote original sequence of control points
n Relabel these points as (P00…. P30)
n Repeat interpolation (u = ½) and label vertices as below 
n Sequences (P00,P01,P02,P03) and (P03,P12,P21,30) 

define Bezier curves also
n Bezier Curves can either be straightened or curved 

recursively in this way



Bezier Surfaces

n Bezier surfaces: interpolate in two dimensions
n This called Bilinear interpolation
n Example: 4 control points, P00, P01, P10, P11, 2 

parameters u and v
n Interpolate between 

n P00 and P01 using u
n P10 and P11 using u
n Repeat two steps above using v
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Bezier Surfaces

n Recalling, (1-u) and u are first-degree Bezier blending 
functions b0,1(u) and b1,1(u)
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Rendering Bezier patches in openGL: v=u = 1/2



B-Splines

n Bezier curves are elegant but too many control points
n Smoother = more control points = higher order polynomial
n Undesirable: every control point contributes to all parts of curve
n B-splines designed to address Bezier shortcomings
n Smooth blending functions, each non-zero over small range
n Use different polynomial in each range, (piecewise 
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B-spline blending functions, order 2



NURBS

n Encompasses both Bezier curves/surfaces and B-splines
n Non-uniform Rational B-splines (NURBS)
n Rational function is ratio of two polynomials
n NURBS use rational blending functions
n Some curves can be expressed as rational functions but 

not as simple polynomials
n No known exact polynomial for circle
n Rational parametrization of unit circle on xy-plane:

0)(
1

2
)(

1
1

)(

2

2

2

=
+

=

+
−

=

uz
u
u

uy

u
u

ux



NURBS

n We can apply homogeneous coordinates to bring in w

n Using w, we cleanly integrate rational parametrization
n Useful property of NURBS: preserved under transformation
n Thus, we can project control points and then render NURBS
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