
CS 543: Computer Graphics
Lecture 10 (Part III): Curves

Emmanuel Agu

So Far…

n Dealt with straight lines and flat surfaces
n Real world objects include curves
n Need to develop:

n Representations of curves
n Tools to render curves

Curve Representation: Explicit

n One variable expressed in terms of another
n Example:

n Works if one x-value for each y value
n Example: does not work for a sphere

n Rarely used in CG because of this limitation

),(yxfz =

22 yxz +=

Curve Representation: Implicit

n Algebraic: represent 2D curve or 3D surface as zeros of a
formula

n Example: sphere representation

n May restrict classes of functions used
n Polynomial: function which can be expressed as linear

combination of integer powers of x, y, z
n Degree of algebraic function: highest sum of powers in

function
n Example: yx4 has degree of 5

01222 =−++ zyx

Curve Representation: Parametric

n Represent 2D curve as 2 functions, 1 parameter

n 3D surface as 3 functions, 2 parameters

n Example: parametric sphere

))(),((uyux

)),(),,(),,((vuzvuyvux

φφθ
θφφθ
θφφθ

sin),(
sincos),(
coscos),(

=
=
=

z
y
x

Choosing Representations

n Different representation suitable for different applications
n Implicit representations good for:

n Computing ray intersection with surface
n Determining if point is inside/outside a surface

n Parametric representation good for:
n Breaking surface into small polygonal elements for rendering
n Subdivide into smaller patches

n Sometimes possible to convert one representation into
another

Continuity

n Consider parametric curve

n We would like smoothest curves possible
n Mathematically express smoothness as continuity (no jumps)
n Defn: if kth derivatives exist, and are continuous, curve has

kth order parametric continuity denoted Ck

TuzuyuxuP))(),(),(()(=

Continuity

n 0th order means curve is continuous
n 1st order means curve tangent vectors vary continuously, etc
n We generally want highest continuity possible
n However, higher continuity = higher computational cost
n C2 is usually acceptable

Interactive Curve Design

n Mathematical formula unsuitable for designers
n Prefer to interactively give sequence of control points
n Write procedure:

n Input: sequence of points
n Output: parametric representation of curve

Interactive Curve Design

n 1 approach: curves pass through control points (interpolate)
n Example: Lagrangian Interpolating Polynomial
n Difficulty with this approach:

n Polynomials always have “wiggles”
n For straight lines wiggling is a problem

n Our approach: merely approximate control points (Bezier, B-
Splines)

De Casteljau Algorithm

n Consider smooth curve that approximates sequence of
control points [p0,p1,….]

n Blending functions: u and (1 – u) are non-negative and
sum to one

10)1()(uppuup +−= 10 ≤≤ u

De Casteljau Algorithm

n Now consider 3 points
n 2 line segments, P0 to P1 and P1 to P2

1001)1()(uppuup +−= 2111)1()(uppuup +−=

De Casteljau Algorithm

)()1()(1101 uuppuup +−=

2
2

10
2))1(2()1(pupuupu +−+−=

Example: Bezier curves with 3, 4 control points

De Casteljau Algorithm

2
02)1()(uub −=

Blending functions for degree 2 Bezier curve

)1(2)(12 uuub −= 2
22)(uub =

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

n Extend to 4 points P0, P1, P2, P3

n Repeated interpolation is De Casteljau algorithm
n Final result above is Bezier curve of degree 3

3
2

2
1

2
0

3))1(3()1(3()1()(upuupuupuup +−+−+−=

De Casteljau Algorithm

n Blending functions for 4 points
n These polynomial functions called Bernstein’s polynomials

3
33

2
23

2
13

3
03

)(

)1(3)(

)1(3)(

)1()(

uub

uuub

uuub

uub

=

−=

−=

−=

De Casteljau Algorithm

n Writing coefficient of blending functions gives Pascal’s
triangle

1

4

1

1

1

1

1

2

4

3

6

1 3

1

1

In general, blending function for k Bezier curve has form

iik
ik uu

i
k

ub −−







=)1()()!(!

!
iki

k
i
k

−
=








where

De Casteljau Algorithm

n Can express cubic parametric curve in matrix form



















=

3

2

1

0

32],,,1[)(

p
p
p
p

Muuuup B

where



















−−
−

−
=

1331
0363

0033
0001

BM

Subdividing Bezier Curves

n OpenGL renders flat objects
n To render curves, approximate by small linear segments
n Subdivide curved surface to polygonal patches
n Bezier curves useful for elegant, recursive subdivision
n May have different levels of recursion for different parts of

curve or surface
n Example: may subdivide visible surfaces more than hidden

surfaces

Subdividing Bezier Curves

n Let (P0… P3) denote original sequence of control points
n Relabel these points as (P00…. P30)
n Repeat interpolation (u = ½) and label vertices as below
n Sequences (P00,P01,P02,P03) and (P03,P12,P21,30)

define Bezier curves also
n Bezier Curves can either be straightened or curved

recursively in this way

Bezier Surfaces

n Bezier surfaces: interpolate in two dimensions
n This called Bilinear interpolation
n Example: 4 control points, P00, P01, P10, P11, 2

parameters u and v
n Interpolate between

n P00 and P01 using u
n P10 and P11 using u
n Repeat two steps above using v

))1(())1)((1(),(11100100 uppuvuppuvvup +−++−−=

11100100)1()1()1)(1(vuppuvupvpuv +−+−+−−=

Bezier Surfaces

n Recalling, (1-u) and u are first-degree Bezier blending
functions b0,1(u) and b1,1(u)

11111101011101000101)()()()()()(),(pubvbpubbvbpubvbvup ++=

Generalizing for cubic ∑∑
= =

=
3

0

3

0
,3,3,)()(),(

i j
jiji pubvbvup

Rendering Bezier patches in openGL: v=u = 1/2

B-Splines

n Bezier curves are elegant but too many control points
n Smoother = more control points = higher order polynomial
n Undesirable: every control point contributes to all parts of curve
n B-splines designed to address Bezier shortcomings
n Smooth blending functions, each non-zero over small range
n Use different polynomial in each range, (piecewise

polynomial) ∑
=

=
m

i
ii puBup

0

)()(

B-spline blending functions, order 2

NURBS

n Encompasses both Bezier curves/surfaces and B-splines
n Non-uniform Rational B-splines (NURBS)
n Rational function is ratio of two polynomials
n NURBS use rational blending functions
n Some curves can be expressed as rational functions but

not as simple polynomials
n No known exact polynomial for circle
n Rational parametrization of unit circle on xy-plane:

0)(
1

2
)(

1
1

)(

2

2

2

=
+

=

+
−

=

uz
u
u

uy

u
u

ux

NURBS

n We can apply homogeneous coordinates to bring in w

n Using w, we cleanly integrate rational parametrization
n Useful property of NURBS: preserved under transformation
n Thus, we can project control points and then render NURBS

2

2

1)(

0)(
2)(
1)(

uuw

uz
uuy

uux

+=

=
=

−=

References

n Hill, chapter 11

