CS 543: Computer Graphics
Lecture 10 (Part I11): Curves

Emmanuel Agu

So Far...

m Dealt with straight lines and flat surfaces
m Real world objects include curves

m Need to develop:

m Representations of curves
m Tools to render curves

Curve Representation: Explicit

m One variable expressed in terms of another
m Example:

z=1(Xy)

m Works if one x-value for each y value
m Example: does not work for a sphere

2=+ y?

m Rarely used in CG because of this limitation

Curve Representation: Implicit

Algebraic: represent 2D curve or 3D surface as zeros of a
formula

Example: sphere representation
X*+y*+2z°-1=0

May restrict classes of functions used

Polynomial: function which can be expressed as linear
combination of integer powers of x, y, z

Degree of algebraic function: highest sum of powers in
function

Example: yx4 has degree of 5

Curve Representation: Parametric

m Represent 2D curve as 2 functions, 1 parameter
(x(u), y(u))
m 3D surface as 3 functions, 2 parameters
(x(u,v), y(u,v), z(u,v))
m Example: parametric sphere
X(q,f) = cosf cosqg
y(q,f) =cosf sing
z(q,f) =sinf

Choosing Representations

m Different representation suitable for different applications
m Implicit representations good for:
m Computing ray intersection with surface
m Determining if point is inside/outside a surface
m Parametric representation good for:
m Breaking surface into small polygonal elements for rendering
m Subdivide into smaller patches

m Sometimes possible to convert one representation into
another

Continuity

m Consider parametric curve

P(u) = (X(u), y(u), z(u))"

m We would like smoothest curves possible
m Mathematically express smoothness as continuity (no jumps)

m Defn: if kth derivatives exist, and are continuous, curve has
kth order parametric continuity denoted Ck

Continuity

Ot order means curve is continuous

1st order means curve tangent vectors vary continuously, etc
We generally want highest continuity possible
However, higher continuity = higher computational cost

C? is usually acceptable

:-'.|l.’:ll'!'l.'_" curvatureg
; : : TTh 1 : e
discontinuity discontn L,' H discontinuity
]
R i :
"w"”‘\\ : H\._
\"_,j, I

Mot continuous CY continuous C 1 continuous

C2 continuous

Interactive Curve Design

m Mathematical formula unsuitable for designers
m Prefer to interactively give sequence of control points
m Write procedure:

m Input: sequence of points
m Output: parametric representation of curve

Interactive Curve Design

1 approach: curves pass through control points (interpolate)
Example: Lagrangian Interpolating Polynomial

Difficulty with this approach:
m Polynomials always have “wiggles”

m For straight lines wiggling is a problem
Our approach: merely approximate control points (Bezier, B-

Splines)

[.

Interpolation

Approximation

De Casteljau Algorithm

m Consider smooth curve that approximates sequence of
control points [p0O,pl,....]

p(u) =(@1- u)p, +up, Ofuf£l

m Blending functions: u and (1 — u) are non-negative and
sum to one

De Casteljau Algorithm

m Now consider 3 points
m 2 line segments, PO to P1 and P1 to P2

p01(u) I (1' U) Po I up, pll(U) J (1' U) Py T up,

M

P

["-'p:

De Casteljau Algorithm

p(U) 1 (1' U) Poy 1 Upll(U)
=(L- u)* p, +(2u- u) p, +u*p,

Example: Bezier curves with 3, 4 control points

De Casteljau Algorithm

Blending functions for degree 2 Bezier curve

boz(u) 1 (1' u)2 b12(u) 1 2U(1- u)

b,,(u) = u’

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm
m Extend to 4 points PO, P1, P2, P3
p(u) 1 (1' U)3 By T (3U(1- U)2 B b (3u2(1' U)) P, T U3

m Repeated interpolation is De Casteljau algorithm
m Final result above is Bezier curve of degree 3

De Casteljau Algorithm

m Blending functions for 4 points

m These polynomial functions called Bernstein’s polynomials

Ohs(U) = (1- u)’
05(u) =3u(l- U)2
0, (U) =3u’(1- u)

055(U) = u’

bg3(u) baalu)

h;_;{U} h:_‘q[ﬂ}

0

Ll]

De Casteljau Algorithm

m Writing coefficient of blending functions gives Pascal’s

triangle
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

In general, blending function for k Bezier curve has form

ako K
where éig il(k - i)!

b, (U) :éf%(l- e

De Casteljau Algorithm

m Can express cubic parametric curve in matrix form

ép, U
N
p(u) =[Lu,u®,u’ M €U
“ép,U
é U
éPs ()
where
el 0 O OQu
é U
I\/IB=é_3 3 0 Ol,J
é3 -6 3 00
ol E 8l

Subdividing Bezier Curves

OpenGL renders flat objects

To render curves, approximate by small linear segments
Subdivide curved surface to polygonal patches

Bezier curves useful for elegant, recursive subdivision

May have different levels of recursion for different parts of
curve or surface

m Example: may subdivide visible surfaces more than hidden
surfaces

Subdividing Bezier Curves

Let (PO... P3) denote original sequence of control points
Relabel these points as (P0OO.... P30)
Repeat interpolation (u = 2) and label vertices as below

Sequences (P0O0O,P01,P02,P03) and (P0O3,P12,P21,30)
define Bezier curves also

m Bezier Curves can either be straightened or curved
recursively in this way

P
P P Pio & P

Pa P3

Bezier Surfaces

m Bezier surfaces: interpolate in two dimensions
m This called Bilinear interpolation

m Example: 4 control points, POO, PO1, P10, P11, 2
parameters u and v

m Interpolate between

= POO and PO1 using u
m P10 and P11 using u
m Repeat two steps above using v

p(U’V) I (1' V)((l' U) poo I up01) +V((1' U) plO I upll)
i (1' V)(l' u) Poo | (1' V)upm +V(1' u) Pio T VUP,

Bezier Surfaces

m Recalling, (1-u) and u are first-degree Bezier blending
functions b0,1(u) and b1,1(u)

p(u1 V) 1 bOl (V) bOl (u) pOO I bOl (V) b11b01(u) pOl T bll (V) bll (u) pll

Generalizing for cubic p(u,v) = é é b|,3(V)bj,3(u) P |
i=0 j=0

11

Rendering Bezier patches in openGL: v=u = 1/2

B-Splines

Bezier curves are elegant but too many control points
Smoother = more control points = higher order polynomial
Undesirable: every control point contributes to all parts of curve
B-splines designed to address Bezier shortcomings

Smooth blending functions, each non-zero over small range

Use different polynomial in each range, (piecewise

polynomial)

p(U) =& B (W)

| | | |
_/L Bp(u) ; i i E
JL B(u) :
J\L Ba(u) i i i i
S x__Bj(u) '-Ilk Ull-; Hl Lllk £2 Ulk-- 3

B-spline blending functions, order 2

NURBS

Encompasses both Bezier curves/surfaces and B-splines
Non-uniform Rational B-splines (NURBS)

Rational function is ratio of two polynomials

NURBS use rational blending functions

Some curves can be expressed as rational functions but
not as simple polynomials

No known exact polynomial for circle
m Rational parametrization of unit circle on xy-plane:

_1-uf
x(u)—1+uz
2U

u) =
y(u) THRE

NURBS

We can apply homogeneous coordinates to bring in w

x(u) =1- u®
y(u) =2u
z(u)=0
w(u) =1+u?

Using w, we cleanly integrate rational parametrization
Useful property of NURBS: preserved under transformation
Thus, we can project control points and then render NURBS

References

m Hill, chapter 11

