
CS 543: Computer Graphics
Lecture 7 (Part II) : 3D Clipping and Viewport
Transformation

Emmanuel Agu

3D Clipping

§ Clipping occurs after projection transformation

§Clipping is against canonical view volume

Parametric Equations

n Implicit form

n Parametric forms:
n points specified based on single parameter value
n Typical parameter: time t

n Some algorithms work in parametric form
n Clipping: exclude line segment ranges
n Animation: Interpolate between endpoints by varying t

0),(=yxF

tPPPtP *)()(010 −+= 10 ≤≤ t

3D Clipping

n 3D clipping against canonical view volume (CVV)

n Automatically clipping after projection matrix

n Liang-Barsky algorithm (embellished by Blinn)

n CVV == 6 infinite planes (x=-1,1;y=-1,1;z=-1,1)

n Clip edge-by-edge of the an object against CVV

n Chopping may change number of sides of an object. E.g.
chopping tip of triangle may create quadrilateral

3D Clipping

n Problem:
n Two points, A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw),

in homogeneous coordinates
n If segment intersects with CVV, need to compute

intersection point I-=(Ix,Iy,Iz,Iw)

3D Clipping

n Represent edge parametrically as A + (C – A)t
n Intepretation: a point is traveling such that:

n at time t=0, point at A
n at time t=1, point at C

n Like Cohen-Sutherland, first determine trivial accept/reject
n E.g. to test edge against plane, point is:

n Inside (right of plane x=-1) if Ax/Aw > -1 or (Aw+Ax)>0
n Inside (left of plane x=1) if Ax/Aw < 1 or (Aw-Ax)>0

-1 1

Ax/Aw

3D Clipping

n Using notation (Aw +Ax) = w + x, write boundary coordinates
for 6 planes as:

z=1w-zBC5

z=-1w+zBC4

y=1w-yBC3

y=-1w+yBC2

x=1w-xBC1

x=-1w+xBC0

Clip planeHomogenous
coordinate

Boundary
coordinate (BC)

§Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) are positive

§Trivial reject: Both endpoints outside of same plane

3D Clipping

n If not trivial accept/reject, then clip

n Define Candidate Interval (CI) as time interval during which
edge might still be inside CVV. i.e. CI = t_in to t_out

n Conversely: values of t outside CI = edge is outside CVV

n Initialize CI to [0,1]

0 1

t
t_in t_out

CI

3D Clipping

n How to calculate t_hit?

n Represent an edge t as:

n E.g. If x = 1,

n Solving for t above,

1
)(

)(
=

−+
−+

tAwCwAw
tAxCxAx

)()(CxCwAxAw
AxAw

t
−−−

−
=

))((,)((,)((,)((()(tAwCwAwtAzCzAztAyCyAytAxCxAxtEdge −+−+−+−+=

3D Clipping

n Test against each wall in turn

n If BCs have opposite signs = edge hits plane at time t_hit

n Define: “entering” = as t increases, outside to inside

n i.e. if pt. A is outside, C is inside

n Likewise, “leaving” = as t increases, inside to outside (A inside,
C outside)

3D Clipping

n Algorithm:

n Test for trivial accept/reject (stop if either occurs)

n Set CI to [0,1]

n For each of 6 planes:

n Find hit time t_hit

n If, as t increases, edge entering, t_in = max(t_in,t_hit)

n If, as t increases, edge leaving, t_out = min(t_out, t_hit)

n If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

3D Clipping

Example to illustrate search for t_in, t_out

Note: CVV is different shape. This is just example

3D Clipping

n If valid t_in, t_out, calculate adjusted edge endpoints A, C as

n A_chop = A + t_in (C – A)
n C_chop = A + t_out (C – A)

3D Clipping Implementation

n Function clipEdge()
n Input: two points A and C (in homogenous coordinates)
n Output:

n 0, if no part of line AC lies in CVV
n 1, otherwise
n Also returns clipped A and C

n Store 6 BCs for A, 6 for C

3D Clipping Implementation

n Use outcodes to track in/out
n Number walls 1… 6
n Bit i of A’s outcode = 0 if A is inside ith wall
n 1 otherwise

n Trivial accept: both A and C outcodes = 0
n Trivial reject: bitwise AND of A and C outcodes is non-zero
n If not trivial accept/reject:

n Compute tHit
n Update t_in, t_out
n If t_in > t_out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& C)
{

double tIn = 0.0, tOut = 1.0, tHit;
double aBC[6], cBC[6];
int aOutcode = 0, cOutcode = 0;

…..find BCs for A and C
…..form outcodes for A and C

if((aOutCode & cOutcode) != 0) // trivial reject
return 0;

if((aOutCode | cOutcode) == 0) // trivial accept
return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
{

if(cBC[i] < 0) // exits: C is outside
{

tHit = aBC[i]/(aBC[i] – cBC[I]);
tOut = MIN(tOut, tHit);

}
else if(aBC[i] < 0) // enters: A is outside
{

tHit = aBC[i]/(aBC[i] – cBC[i]);
tIn = MAX(tIn, tHit);

}
if(tIn > tOut) return 0; // CI is empty: early out

}

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode != 0) // A is out: tIn has changed
{

tmp.x = A.x + tIn * (C.x – A.x);
// do same for y, z, and w components

}
If(cOutcode != 0) // C is out: tOut has changed
{

C.x = A.x + tOut * (C.x – A.x);
// do same for y, z and w components

}
A = tmp;
Return 1; // some of the edges lie inside CVV
}

Viewport Transformation

n After clipping, do viewport transformation
n We have used glViewport(x,y, wid, ht) before
n Use again here!!
n glViewport shifts x, y to screen coordinates
n Also maps pseudo-depth z from range [-1,1] to [0,1]
n Pseudo-depth stored in depth buffer, used for Depth testing (Will

discuss later)

References

n Hill, sections 7.4.4, 4.8.2

