CS 543: Computer Graphics

Lecture 7 (Part 11) : 3D Clipping and Viewport

Transformation

Emmanuel Agu

3D Clipping

projection

/ matrix

Vi

—» VM > P —» clip [Vs —+|

\

\ .I : ¥ -

modelview viewpor
matrix matrix

» Clipping occurs after projection transformation

=Clipping Is against canonical view volume

Parametric Equations

m Implicit form

F(X,y)=0
m Parametric forms:

m points specified based on single parameter value
m Typical parameter: time t

P(t)=P,+(R - P,)*t 0£t£1

m Some algorithms work in parametric form
m Clipping: exclude line segment ranges
= Animation: Interpolate between endpoints by varying t

3D Clipping

= 3D clipping against canonical view volume (CVV)
= Automatically clipping after projection matrix

= Liang-Barsky algorithm (embellished by Blinn)

= CVV == 6 infinite planes (x=-1,1;y=-1,1;z=-1,1)
= Clip edge-by-edge of the an object against CVV

= Chopping may change number of sides of an object. E.g.
chopping tip of triangle may create quadrilateral

3D Clipping

= Problem:
= Two points, A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw),
IN homogeneous coordinates

= If segment intersects with CVV, need to compute
intersection point I-=(Ix,ly,lz,Iw)

?(

3D Clipping

= Represent edge parametrically as A + (C — A)t
= Intepretation: a point is traveling such that:
= at time t=0, point at A
= at time t=1, point at C
= Like Cohen-Sutherland, first determine trivial accept/reject
= E.g. to test edge against plane, point is:
= Inside (right of plane x=-1) if AX/Aw > -1 or (Aw+Ax)=>0
= Inside (left of plane x=1) if AX/Aw < 1 or (Aw-Ax)=0

-1 1

3D Clipping

= Using notation (Aw +Ax) = w + X, write boundary coordinates
for 6 planes as:

Boundary Homogenous Clip plane
coordinate (BC) coordinate

BCO W-+X X=-1

BC1 W-X x=1

BC2 w-+y y=-1

BC3 wW-y y=1

BC4 wW-+2z z=-1

BCS W-Z z=1

*Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) are positive

*Trivial reject: Both endpoints outside of same plane

3D Clipping

If not trivial accept/reject, then clip

Define Candidate Interval (Cl) as time interval during which
edge might still be inside CVV. i.e. Cl =t _in to t out

0 Cl 1
TTinnnnnunnnnnnnnnnnuinnnghs

t In t out

Conversely: values of t outside ClI = edge is outside CVV

Initialize CI to [0,1]

3D Clipping

= How to calculate t_hit?

= Represent an edge t as:
Edge(t) = ((Ax+ (Cx- AX)t,(Ay+(Cy- Ay)t,(Az+(Cz- Az)t,(Aw+ (Cw- Aw)t)

Ax+ (Cx- AX)t 1}

= E.g. Ifx=1, =
Aw+ (Cw- Aw)t

= Solving for t above,
11 Aw- AX
(Aw- AX)- (Cw- CXx)

3D Clipping

s Test against each wall in turn

= If BCs have opposite signs = edge hits plane at time t_hit
= Define: “entering” = as t increases, outside to inside

= I.e. if pt. Ais outside, C is inside

= Likewise, “leaving” = as t increases, inside to outside (A inside,
C outside)

3D Clipping

Algorithm:
= Test for trivial accept/reject (stop if either occurs)
= Set Cl to [0,1]
= For each of 6 planes:
= Find hit time t_hit
= If, as t increases, edge entering, t in = max(t_in,t_hit)
= If, as t increases, edge leaving, t out = min(t_out, t_hit)

m If t in >t _out == exit (no valid intersections)

Note: seeking smallest valid ClI without t_in crossing t_out

3D Clipping

Example to illustrate search for t_in, t out

Note: CVV is different shape. This is just example

@.2
' (@()

e : Line test ti, fout

0 0 0.83

(t’:'- 1 _.----,:"-"__.""""'r"""' / II'II gt '.II in l erse cts f_” l U {} {*}f‘)
e | @-4.7
e O /@66 | | <

y | -.) 0 0.66
._f'r I|I I', .
@83 3 0 0.66

4 0.2 0.66

intersects L, o ’ 5 0.28 0.66
@3.4 R

3D Clipping
m If valid t_In, t out, calculate adjusted edge endpoints A, C as

m A chop=A+tin(C-A)
m C chop=A+tout(C-A)

3D Clipping Implementation

m Function clipEdge()
m Input: two points A and C (in homogenous coordinates)
m Output:

m O, if no part of line AC lies in CVV

m 1, otherwise
m Also returns clipped A and C

m Store 6 BCs for A, 6 for C

3D Clipping Implementation

m Use outcodes to track in/out
= Number walls 1... 6
m Biti of A’s outcode = O if A is inside ith wall
m 1 otherwise
m Trivial accept: both A and C outcodes = O
m Trivial reject: bitwise AND of A and C outcodes is non-zero

m If not trivial accept/reject:
s Compute tHit
m Update t in, t out
m Ift in >t out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& C)

{
double tIn = 0.0, tOut = 1.0, tHit;

double aBC[6], cBC[6];
int aOutcode = 0, cOutcode = O;

..... find BCs for A and C
..... form outcodes for A and C

iIf((aOutCode & cOutcode) '= 0) // trivial reject
return O;

iIf((aOutCode | cOutcode) == 0) // trivial accept
return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane

{

If(cBC[1] < 0) // exits: C is outside
{
tHit = aBC[i]/(aBC[i] — cBC[I]);
tOut = MIN(tOut, tHit);
s

else if(aBC[i] < 0) // enters: A is outside
{

tHit = aBC[i]/(aBCJ[i] — cBC[i]);

tIn = MAX(tIn, tHit);

s
iIf(tln > tOut) return O; // CI is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode '=0) // A is out: tIn has changed
{

tmp.Xx = A.X + tIn * (C.x — A.X);

// do same for y, z, and w components

¥
If(cOutcode '= 0) // C is out: tOut has changed

{
C.x = A.X + tOut * (C.x — A.X);
// do same for y, z and w components
s
A = tmp;
Return 1; // some of the edges lie inside CVV
¥

Viewport Transformation

After clipping, do viewport transformation

We have used glViewport(x,y, wid, ht) before

Use again here!!

glViewport shifts X, y to screen coordinates

Also maps pseudo-depth z from range [-1,1] to [O,1]

Pseudo-depth stored in depth buffer, used for Depth testing (Will
discuss later)

projection
. matrix

rd
/

”
-

| | i A
VM > P > clip "4 V, i i

\
\
modelview 0!

matrix matrix

VIEW port

References

m Hill, sections 7.4.4, 4.8.2

