
CS 543: Computer Graphics
Lecture 4 (Part II): Introduction to 3D Modeling

Emmanuel Agu

3D Modeling

n Overview of OpenGL modeling (Hill 5.6)
n Modeling: create 3D model of scene/objects
n OpenGL commands

n Coordinate systems (left hand, right hand, openGL-way)
n Basic shapes (cone, cylinder, etc)
n Transformations/Matrices
n Lighting/Materials
n Synthetic camera basics
n View volume
n Projection

n GLUT models (wireframe/solid)
n Scene Description Language (SDL): 3D file format

Coordinate Systems

x

Y

+z

Right hand coordinate system

x

Left hand coordinate system
•Not used in this class and
•Not in OpenGL

+z

n Tip: sweep fingers x-y: thumb is z

Rotation Direction

n Which way is +ve rotation
n Look in –ve direction (into +ve arrow)
n CCW is +ve rotation

x

y

z

+

3D Modeling: GLUT Models

n Two main categories:
n Wireframe Models
n Solid Models

n Basic Shapes
n Cylinder: glutWireCylinder(), glutSolidCylinder()
n Cone: glutWireCone(), glutSolidCone()
n Sphere: glutWireSphere(), glutSolidSphere()
n Cube: glutWireCube(), glutSolidCube()

n More advanced shapes:
n Newell Teapot: (symbolic)
n Dodecahedron, Torus

GLUT Models: glutwireTeapot()

n The famous Utah Teapot has become an unofficial
computer graphics mascot

Again, you need to apply transformations to position it at the right spot

glutWireTeapot(0.5) -

Create a teapot with size 0.5, and position
its center at (0,0,0)
Also glutSolidTeapot()

3D Modeling: GLUT Models

n Glut functions actually
n generate sequence of points that define corresponding shape
n centered at 0.0

n Without GLUT models:
n Use generating functions
n More work!!

n What does it look like?
n Generates a list of points and polygons for simple shapes
n Spheres/Cubes/Sphere

Cylinder Algorithm

glBegin(GL_QUADS)
For each A = Angles{

glVertex3f(R*cos(A), R*sin(A), 0);
glVertex3f(R*cos(A+DA), R*sin(A+DA), 0)
glVertex3f(R*cos(A+DA), R*sin(A+DA), H)
glVertex3f(R*cos(A), R*sin(a), H)

}

// Make Polygon of Top/Bottom of cylinder

3D Transforms

n Scale:
n glScaled(sx, sy, sz) - scale object by (sx, sy, sz)

n Translate:
n glTranslated(dx, dy, dz) - translate object by (dx, dy, dz)

n Rotate:
n glRotated(angle, ux, uy, uz) – rotate by angle about an axis

passing through origin and (ux, uy, uz)

n OpenGL
n Creates matrices for each transform (scale, translate, rotate)
n Multiplies matrices together to form 1 combined matrix
n Combined geometry transform matrix called modelview

matrix

OpenGL Matrices

Graphics pipeline: vertices goes through series of operations

OpenGL Matrices/Pipeline

n OpenGL uses 3 matrices (simplified) for geometry:
n Modelview matrix:
n Projection matrix:
n Viewport matrix:

n Modelview matrix:
n combination of modeling matrix M and Camera transforms V

n Other OpenGL matrices include texture and color matrices
n glMatrixMode command selects matrix mode
n May initialize matrices with glLoadIdentity()
n glMatrixMode parameters: GL_MODELVIEW,

GL_PROJECTION, GL_TEXTURE, etc
n OpenGL matrix operations are 4x4 matrices
n Graphics card: fast 4x4 multiplier -> tremendous speedup

View Volume

n Side walls determined by window borders
n Other walls determined by programmer-defined

n Near plane
n Far plane

n Convert 3D models to 2D:
n Project points/vertices inside view volume unto view window

using parallel lines along z-axis

Projection

n Different types of projections?
n Different view volume shapes
n Different visual effects

n Example projections
n Parallel
n Perspective

n Parallel is simple
n Will use for this intro, expand later

OpenGL Matrices/Pipeline

n Projection matrix:
n Scales and shifts each vertex in a particular way.
n View volume lies inside cube of –1 to 1
n Reverses sense of z: increasing z = increasing depth
n Effectively squishes view volume down to cube centered at 1

n Clipping: (in 3D) then eliminates portions outside view volume
n Viewport matrix:

n Maps surviving portion of block (cube) into a 3D viewport
n Retains a measure of the depth of a point

Lighting and Object Materials

n Light components:
n Diffuse, ambient, specular
n OpenGL: glLightfv(), glLightf()

n Materials:
n OpenGL: glMaterialfv(), glMaterialf()

Synthetic Camera

n Define:
n Eye position
n LookAt point
n Up vector (if spinning: confusing)

n Programmer knows scene, chooses:
n eye
n lookAt

n Up direction usually set to (0,1,0)
n OpenGL:

n gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x,
up.y, up.z)

Synthetic Camera

Hierarchical Transforms Using OpenGL

n Two ways to model
n Immediate mode (OpenGL)
n Retained mode (SDL)

n Graphical scenes have object dependency,
n Many small objects
n Attributes (position, orientation, etc) depend on each other

base

lower arm

hammerA Robot Hammer!

Hierarchical Transforms Using OpenGL

n Object dependency description using tree structure

Base

Lower arm

Upper arm

Hammer

Root node

Leaf node

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
… nodes

Hierarchical representation

is known as Scene Graph

Transformations

n Two ways to specify transformations:
n (1) Absolute transformation: each part of the object is

transformed independently relative to the origin

Translate the base by (5,0,0);
Translate the lower arm by (5,00);
Translate the upper arm by (5,00);
…

x
z

y

Relative Transformation

A better (and easier) way:
(2) Relative transformation: Specify the transformation for each object

relative to its parent

Step 1: Translate base and
its descendants by (5,0,0);

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

x
z

y

x

z

y

Relative Transformation

n Represent relative transformation using scene graph

Base

Lower arm

Upper arm

Hammer

Rotate (-90) about its local y

Translate (5,0,0)

Apply all the way
down

Apply all the way
down

Hierarchical Transforms Using OpenGL

n Translate base and all its descendants by (5,0,0)
n Rotate the lower arm and its descendants by -90 degree about the local y

Base

Lower arm

Upper arm

Hammer

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

… // setup your camera

glTranslatef(5,0,0);

Draw_base();

glRotatef(-90, 0, 1, 0);

Draw_lower _arm();
Draw_upper_arm();
Draw_hammer();

Hierarchical Models

n Two important calls:
n glPushMatrix(): load transform matrix with following matrices
n glPopMatrix(): restore transform matrix to what it was before

glPushMatrix()

n If matrix stack has M1 at the top, after glPushMatrix(),
positions 1 and 2 on matrix stack have M1

n If M1 is at the top and M2 is second in position, glPopMatrix()
destroys M1 and leaves M2 at the top

n To pop matrix without error, matrix must have depth of at
least 2

n Possible depth of matrices vary.
n Modelview matrix allows 32 matrices
n Other matrices have depth of at least 2

Example: Table modeled with OpenGL

// define table leg
//--
void tableLeg(double thick, double len){

glPushMatrix();
glTranslated(0, len/2, 0);
glScaled(thick, len, thick);
glutSolidCube(1.0);
glPopMatrix();

}

// note how table uses tableLeg-
void table(double topWid, double topThick, double legThick, double legLen){

// draw the table - a top and four legs
glPushMatrix();
glTranslated(0, legLen, 0);

Example: Table modeled with OpenGL

scaled(topWid, topThick, topWid);
glutSolidCube(1.0);
glPopMatrix();

double dist = 0.95 * topWid/2.0 - legThick / 2.0;
glPushMatrix();
glTranslated(dist, 0, dist);
tableLeg(legThick, legLen);
glTranslated(0, 0, -2*dist);
tableLeg(legThick, legLen);
glTranslated(-2*dist, 0, 2*dist);
tableLeg(legThick, legLen);
glTranslated(0, 0, -2*dist);
tableLeg(legThick, legLen);
glPopMatrix();

}

Example: Table modeled with OpenGL

// translate and then call

glTranslated(0.4, 0, 0.4);
table(0.6, 0.02, 0.02, 0.3); // draw the table

SDL

nImmediate mode graphics with openGL: a little tougher
nSDL: Example language for retained mode graphics
nSDL makes hierarchical modeling easy
nSDL data structure format

SDL

n Easy interface to use
n 3 steps:
n Step One

n #include “sdl.h”
n Add sdl.cpp to your make file/workspace

n Step Two:
n Instantiate a Scene Object
n Example: Scene scn;

n Step Three:
n scn.read(“your scene file.dat”); // reads your scene
n scn. makeLightsOpenGL(); // builds lighting data structure
n scn. drawSceneOpenGL(); // draws scene using OpenGL

Example: Table with SDL

def leg{push translate 0 .15 0 scale .01 .15 .01 cube pop}

def table{
push translate 0 .3 0 scale .3 .01 .3 cube pop
push
translate .275 0 .275 use leg
translate 0 0 -.55 use leg
translate -.55 0 .55 use leg
translate 0 0 -.55 use leg pop
}

push translate 0.4 0 0.4 use table pop

Examples

n Hill contains useful examples on:
n Drawing fireframe models (example 5.6.2)
n Drawing solid models and shading (example 5.6.3)
n Using SDL in a program (example 5.6.4)

n Homework 2:
n involves studying these examples
n Work with SDL files in OpenGL
n Start to build your own 3D model (robot)

References

n Hill, 5.6, appendix 3
n Angel, Interactive Computer Graphics using OpenGL (4th

edition)
n Hearn and Baker, Computer Graphics with OpenGL (3rd edition)

