
CS 543: Computer Graphics
Lecture 2 (Part II): Tiling, Zooming and 2D Clipping

Emmanuel Agu

Applications of W-to-V Mapping

n W-to-V Applications:
n Zooming: in on a portion of object
n Tiling: W-to-V in loop, adjacent viewports
n Flipping drawings

n Mapping different window and viewport aspect ratios
(W/H)

Tiling: Example 3.2.4 of Hill (pg. 100)

n Problem: want to tile dino.dat in 5x5 across screen
n Code:

// set world window
gluOrtho2D(0, 640.0, 0, 440.0);

for(int i=0;i < 5;i++)
{

for(int j = 0;j < 5; j++)
{ // .. now set viewport in a loop

glViewport(i * 64, j * 44; 64, 44);
drawPolylineFile(dino.dat);

}
}

Zooming

n Problem:
n dino.dat is currently drawn on entire screen.
n User wants to zoom into just the head
n Specifies selection by clicking top-left and bottom-right

corners

Zooming

Step 1 : Calculate mapping A, that maps
dino.dat (world window) to viewport

my first attempt

Step 2: Calculate reverse mapping A’ of current
viewport back to the entire world window (dino.dat)

World window

Viewport

A’

A

()LVLWAAxSx .).(−−=

()BVBWBBySy .).(−−=
Example
mapping A

Zooming

Step 3 : Program accepts two
mouse clicks as rectangle corners

my first attempt

Step 4: Use mapping A’ to refer
selected screen rectangle to world

World window

Viewport

A’

A

()LVLWAAxSx .).(−−=

()BVBWBBySy .).(−−=
Example
mapping A

Step 5: Call gluOrtho2D on
smaller rectangle

Zooming

n Zooming (pseudocode):
1. Calculate mapping A of from world (entire dino.dat)

to current viewport
2. Derive reverse mapping A’ from viewport to world
3. Program accepts two mouse clicks as rectangle

corners
4. Use mapping A’ to refer screen rectangle to world
5. Sets world to smaller world rectangle (gluOrtho2D on

selected rectangle in world coordinates)
6. Remaps small rectangle in world to screen viewport

What if Window and Viewport have different
Aspect Ratios?

n Aspect ratio: is ratio R = Width/Height
n What if window and viewport have different aspect ratios?
n If different, two possible cases:

n Case A (R > W/H): map a wide window to a tall viewport?

Aspect ratio R

Viewport

W

glOrtho(left, right, bottom, top);
R = (right – left)/(top – bottom);
If(R > W/H)

glViewport(0, 0, W, W/R);

H

W/R
Window

What if Window and Viewport have different
Aspect Ratios?

n Case B (R < W/H): map a tall window to a wide viewport?

Aspect
ratio R

Viewport

W

glOrtho(left, right, bottom, top);
R = (right – left)/(top – bottom);
If(R < W/H)

glViewport(0, 0, H*R, H);

HHR

Window

HR

reshape() function that maintains aspect
ratio

// glOrtho(left, right, bottom, top)is done previously,
// probably in your draw function
// function assumes variables left, right, top and bottom
// are declared and updated globally

void myReshape(double W, double H){
R = (right – left)/(top – bottom);

if(R > W/H)
glViewport(0, 0, W, W/R);

else if(R < W/H)
glViewport(0, 0, H*R, H);

else
glViewport(0, 0, W, H); // equal aspect ratios

}

Cohen-Sutherland Clipping

n Frequently want to view only a portion of the picture

n For instance, in dino.dat, you can select to view/zoom in
on only the dinosaur’s head

n Clipping: eliminate portions not selected

n OpenGL automatically clips for you

n We want algorithm for clipping

n Classical algorithm: Cohen-Sutherland Clipping

n Picture has 1000s of segments : efficiency is important

Clipping Points

(xmin, ymin)

(xmax, ymax)
n Determine whether a point

(x,y) is inside or outside of
the world window?

If (xmin <= x <= xmax)
and (ymin <= y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

n 3 cases:
n Case 1: All of line in
n Case 2: All of line out
n Case 3: Part in, part out

(xmin, ymin)

(xmax, ymax)

1

2

3

Clipping Lines: Trivial Accept

n Case 1: All of line in
n Test line endpoints:

n Note: simply comparing x,y
values of endpoints to x,y
values of rectangle

n Result: trivially accept.
n Draw line in completely

(Xmin, Ymin)

(Xmax, Ymax)

p1

p2

Xmin <= P1.x, P2.x <= Xmax
and

Ymin <= P1.y, P2.y <= Ymax

Clipping Lines: Trivial Reject

n Case 2: All of line out
n Test line endpoints:

n Note: simply comparing x,y
values of endpoints to x,y
values of rectangle

n Result: trivially reject.
n Don’t draw line in

p1

p2

§ p1.x, p2.x <= Xmin OR
§ p1.x, p2.x >= Xmax OR
§ p1.y, p2.y <= ymin OR
§ p1.y, p2.y >= ymax

Clipping Lines: Non-Trivial Cases

n Case 3: Part in, part out

n Two variations:
n One point in, other out
n Both points out, but part of

line cuts through viewport

n Need to find inside segments

n Use similar triangles to figure
out length of inside segments

e

p2

p1

d

delx

dely

delx
e

dely
d

=

Clipping Lines: Calculation example

n If chopping window has
(left, right, bottom, top) =
(30, 220, 50, 240), what happens when

the following lines are chopped?

n (a) p1 = (40,140), p2 = (100, 200)

n (b) p1 = (20,10), p2 = (20, 200)

n (c) p1 = (100,180), p2 = (200, 250)

e

p2

p1

d

delx

dely

delx
e

dely
d

=

Cohen-Sutherland pseudocode (fig. 3.21)

int clipSegment(Point2& p1, Point2& p2, RealRect W)
{

do{
if(trivial accept) return 1; // whole line survives
if(trivial reject) return 0; // no portion survives
// now chop
if(p1 is outside)
// find surviving segment
{

if(p1 is to the left) chop against left edge
else if(p1 is to the right) chop against right edge
else if(p1 is below) chop against the bottom edge
else if(p1 is above) chop against the top edge

}

Cohen-Sutherland pseudocode (fig. 3.23)

else // p2 is outside
// find surviving segment

{
if(p2 is to the left) chop against left edge
else if(p2 is to right) chop against right edge
else if(p2 is below) chop against the bottom edge
else if(p2 is above) chop against the top edge

}
}while(1);

}

Cohen-Sutherland Implementation

n Need quick efficient comparisons
to get quick accepts, rejects,
chop

n Can use C/C++ bit operations
n Breaks space into 4-bit words

n Trivial accept: both FFFF
n Trivial reject: T in same position
n Chop everything else

n Systematically chops against four
edges

n Important: read Hill 3.3

FFFF

TFFT FFFT FFTT

TFFF

TTFF FTFF FTTF

FFTF

Remember to read

n Section 3.2.2 on pg. 92 of Hill

n Hill 3.3

References

n Hill, 3.1 – 3.3, 3.8

