
Computer Graphics (CS 543)
Lecture 10: Normal Maps,

Parametrization, Tone Mapping

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Normal Mapping
 Store normals in texture

 Normals <x,y,z> stored in <r,g,b> values in texture

 Normal map may change a lot, simulate fine details

 Low rendering complexity method for making low-resolution
geometry look like it’s much more detailed

Normal Mapping Example: Ogre
OpenGL 4 Shading Language Cookbook (2nd edition) by David Wolff (pg 130)

Base color texture
(used this in place of
diffuse component)

Normal texture map

Texture mapped
Ogre (Uses mesh
normals)

Texture and normal
mapped Ogre (Uses
normal map to
modify mesh
normals)

Creating Normal Maps

 Many tools for creating normal map

 E.g. Nvidia texture tools for Adobe photoshop
 https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop

Tangent Space Vectors

 Normals in normal map stored in object local coord. frame (or
tangent space)

 Object Local coordinate space? Axis positioned on surface of
object (NOT global x,y,z)

 Need Tangent, normal and bi-tangent vectors at each vertex
 z axis aligned with mesh normal at that point

 x, y axes at a tangent (and bi-tangent) to the surface

Tangent Space Vectors

 Normals stored in texture includes mesh transformation + local
deviation (e.g. bump)

 Reflection model must be evaluated in object’s local coordinate
(n, t, b)

 Need to transform view, light and normal vectors into object’s
local coordinate space

v

l

Need to transform

l, v and n into object

local coord.

Transforming V,L and N into Object’s Local
Coordinate Frame

 To transform a point P eye into a corresponding point S in
object’s local coordinate frame:

Point P in eye
coordinate frame

Point S in object’s
locatl coordinate

frame

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (2nd edition) by David Wolff (pg 133)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal

Vertex 1 Attributes

layout (location) = 0

layout (location) = 1

VertexTangent

z

OpenGL Program

Vertex Shader

VertexPosition

VertexTexCoord

VertexNormal

VertexTangent

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (2nd edition) by David Wolff (pg 133)

Vertex Shader

Transform normal and

tangent to eye space

….

Compute bi-normal vector

Form matrix to convert from

eye to local object coordinates

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (2nd edition) by David Wolff (pg 133)

Vertex Shader

Get position in eye coordinates

….

Transform light and view

directions to tangent space

Fragment Shader

Receive Light, View directions

and TexCoord set in vertex shader

……

Declare Normal and Color maps

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (2nd edition) by David Wolff (pg 133)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal VertexTangent

z r g b

ColorTex

Normal Map Diffuse Color Map

Fragment Shader

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (2nd edition) by David Wolff (pg 133)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal VertexTangent

z r g b

ColorTex

Normal Map Diffuse Color Map

Fragment Shader

Function to compute

Phong’s lighting model

Look up normal from

normal map

Look up diffuse coeff.

from color texture

Bump mapping

 by Blinn in 1978

 Inexpensive way of simulating wrinkles and bumps
on geometry

 Too expensive to model these geometrically

 Instead let a texture modify the normal at each pixel,
and then use this normal to compute lighting

geometry
Bump map

Stores heights: can derive normals

+ Bump mapped geometry
=

Bump mapping: examples

Bump Mapping Vs Normal Mapping
 Bump mapping

 (Normals n=(nx , ny , nz) stored as
distortion of face orientation.
Same bump map can be
tiled/repeated and reused for
many faces)

 Normal mapping

 Coordinates of normal (relative to
tangent space) are encoded in
color channels

 Normals stored include face
orientation + plus distortion.)

Displacement Mapping

 Uses a map to displace
the surface at each
position

 Offsets the position per
pixel or per vertex

 Offsetting per vertex is
easy in vertex shader

 Offsetting per pixel is
architecturally hard

Hot Research Topic: Parametrization

Parametrization in Practice

 Texture creation and parametrization is an art form

 Option: Unfold the surface

Parametrization in Practice

 Option: Create a Texture Atlas

 Break large mesh into smaller pieces

Light Maps

 Good shadows are complicated and
expensive

 If lighting and objects will not change,
neither are the shadows

 Can “bake” the shadows into a texture
map as a preprocess step (called lightmap)

 During shading, lightmap values are
multiplied into resulting pixel

Light Maps

Specular Mapping

 Use a greyscale texture as a multiplier for the
specular component

Alpha Mapping

 Represent the texture in the alpha channel

 Can give complex outlines, used for plants

Render Bush

on 1 polygon

Render Bush

on polygon rotated

90 degrees

High Dynamic Range

 Sun’s brightness is about 60,000 lumens

 Dark areas of earth has brightness of 0 lumens

 Basically, world around us has range of 0 – 60,000 lumens
(High Dynamic Range)

 However, monitor has ranges of colors between 0 – 255 (Low
Dynamic Range)

 New file formats have been created for HDR images (wider
ranges). (E.g. OpenEXR file format)

HDR

0 Lumens

60,000 Lumens

High Dynamic Range

 Some scenes contain very bright + very dark areas

 Using uniform scaling factor to map actual intensity to
displayed pixel intensity means:
 Either some areas are unexposed, or

 Some areas of picture are overexposed

Under exposure Over exposure

Tone Mapping

 Technique for scaling intensities in real world images (e.g HDR
images) to fit in displayable range

 Try to capture feeling of real scene: non-trivial

 Example: If coming out of dark tunnel, lights should seem
bright

 General idea: apply different scaling factors to diffferent
parts of the image

HDR LDR

Tone

Mapping

Tone Mapping

Types of Tone Mapping Operators

 Global: Use same scaling factor for all pixels

 Local: Use different scaling factor for different parts
of image

 Time-dependent: Scaling factor changes over time

 Time independent: Scaling factor does NOT change
over time

 Real-time rendering usually does NOT implement
local operators due to their complexity

Simple (Global) Tone Mapping Methods

Motion Blur

 Motion blur caused by exposing film to moving objects

 Motion blur: Blurring of samples taken over time (temporal)

 Makes fast moving scenes appear less jerky

 30 fps + motion blur better than 60 fps + no motion blur

Motion Blur
 Basic idea is to average series of images over time

 Move object to set of positions occupied in a frame, blend
resulting images together

 Can blur moving average of frames. E.g blur 8 images

 Velocity buffer: blur in screen space using velocity of objects

Depth of Field

 We can simulate a real camera

 In photographs, a range of pixels in focus

 Pixels outside this range are out of focus

 This effect is known as Depth of field

Lens Flare and Bloom

 Caused by lens of eye/camera when directed at light

 Halo – refraction of light by lens

 Ciliary Corona – Density fluctuations of lens

 Bloom – Scattering in lens, glow around light

Halo, Bloom, Ciliary Corona – top to bottom

Reference

 Tomas Akenine-Moller, Eric Haines and Naty Hoffman, Real Time
Rendering

