
Computer Graphics (CS 543)
Lecture 9a: Sphere Maps,
Viewport Transformation

& Hidden Surface Removal

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Sphere Environment Map

 Cube can be replaced by a sphere (sphere map)

Sphere Mapping

 Original environmental mapping technique

 Proposed by Blinn and Newell

 Map longitude and latitude to texture coordinates

 OpenGL supports sphere mapping

 Requires a circular texture map equivalent to an image taken
with a fisheye lens

Sphere Map

Capturing a Sphere Map

Viewport
Transformation

Viewport Transformation

 After projection, clipping, do viewport transformation

User implements in

Vertex shader

Manufacturer

implements

In hardware

Viewport Transformation

 Maps CVV (x, y) -> screen (x, y) coordinates

x

y

width

1-1 x

y

-1

1

height

Canonical
View volume

Screen
coordinates

glViewport(x,y, width, height)

(x,y)

Viewport Transformation: What of z?

 Also maps z (pseudo-depth) from [-1,1] to [0,1]

 [0,1] pseudo-depth stored in depth buffer,

 Used for Depth testing (Hidden Surface Removal)

x

y

z

-1 0
1

pseudo-depth

Hidden Surface
Removal

Rasterization

 Rasterization generates set of fragments

 Implemented by graphics hardware

 Rasterization algorithms for primitives (e.g lines,
circles, triangles, polygons)

Rasterization: Determine Pixels

(fragments) each primitive covers

Fragments

Hidden surface Removal

 Drawing polygonal faces on screen consumes CPU cycles

 User cannot see every surface in scene

 To save time, draw only surfaces we see

 Surfaces we cannot see and elimination methods?

1. Occluded surfaces: hidden

surface removal (visibility)

Back face

2. Back faces: back face culling

Hidden surface Removal

 Surfaces we cannot see and elimination methods:
 3. Faces outside view volume: viewing frustrum culling



Classes of HSR techniques:

 Object space techniques: applied before rasterization

 Image space techniques: applied after vertices have been
rasterized

Clipped

Not Clipped

Visibility (hidden surface removal)

 Overlapping opaque polygons

 Correct visibility? Draw only the closest polygon

 (remove the other hidden surfaces)

wrong visibility Correct visibility

Image Space Approach

 Start from pixel, work backwards into the scene

 Through each pixel, (nm for an n x m frame buffer)
find closest of k polygons

 Complexity O(nmk)

 Examples:

 Ray tracing

 z-buffer : OpenGL

OpenGL - Image Space Approach

 Paint pixel with color of closest object

for (each pixel in image) {

determine the object closest to the pixel

draw the pixel using the object’s color

}

Z buffer Illustration

eye

Z = 0.3

Z = 0.5

Top View

Correct Final image

Z buffer Illustration

1.0 1.0 1.0 1.0

Step 1: Initialize the depth buffer

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

Largest possible

z values is 1.0

x

y

z

-1 0
1

pseudo-depth

Z buffer Illustration

Step 2: Draw blue polygon
(actually order does not affect final result)

eye

Z = 0.3

Z = 0.5

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.5 0.5 1.0 1.0

0.5 0.5 1.0 1.0

1. Determine group of pixels corresponding to blue polygon

2. Figure out z value of blue polygon for each covered pixel (0.5)

3. For each covered pixel, z = 0.5 is less than 1.0

1. Smallest z so far = 0.5, color = blue

Z buffer Illustration

Step 3: Draw the yellow polygon

eye

Z = 0.3

Z = 0.5

1.0 0.3 0.3 1.0

0.5 0.3 0.3 1.0

0.5 0.5 1.0 1.0

z-buffer drawback: wastes resources drawing and redrawing faces

1.0 1.0 1.0 1.0

1. Determine group of pixels corresponding to yellow polygon

2. Figure out z value of yellow polygon for each covered pixel (0.3)

3. For each covered pixel, z = 0.3 becomes minimum, color = yellow

OpenGL HSR Commands

 3 main commands to do HSR

 glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB)

instructs openGL to create depth buffer

 glEnable(GL_DEPTH_TEST) enables depth testing

 glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT) initializes depth buffer every
time we draw a new picture

Z-buffer Algorithm

 Initialize every pixel’s z value to 1.0

 rasterize every polygon

 For each pixel in polygon, find its z value (interpolate)

 Track smallest z value so far through each pixel

 As we rasterize polygon, for each pixel in polygon

 If polygon’s z through this pixel < current min z through pixel

 Paint pixel with polygon’s color

Find depth (z) of every
polygon at each pixel

Z (depth) Buffer Algorithm

For each polygon {

for each pixel (x,y) in polygon area {

if (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (x,y)
}

}
}

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Depth of polygon being
rasterized at pixel (x, y)

Largest depth seen so far
Through pixel (x, y)

Combined z-buffer and Gouraud Shading
(Hill Book, 2nd edition, pg 438)

 Can combine shading and hsr through scan line algorithm

for(int y = ybott; y <= ytop; y++) // for each scan line

{

for(each polygon){

find xleft and xright

find dleft, dright, and dinc

find colorleft and colorright, and colorinc

for(int x = xleft, c = colorleft, d = dleft; x <= xright;

x++, c+= colorinc, d+= dinc)

if(d < d[x][y])

{

put c into the pixel at (x, y)

d[x][y] = d; // update closest depth

}

}

color3

color4

color1

color2

ybott

ys

y4

ytop

xrightxleft

Perspective Transformation: Z-Buffer
Depth Compression

 Pseudodepth calculation: Recall we chose parameters (a and b)
to map z from range [near, far] to pseudodepth range[-1,1]

(-1, -1, 1)

(1, 1, -1)

Canonical
View Volume

x

y

z




































































1

0100

2)(
00

0
2

0

00
minmax

2

z

y

x

NF

FN

NF

NF

bottomtop

bottomtop

bottomtop

N

leftright

leftright

xx

N

These values map z values of original

view volume to [-1, 1] range

Z-Buffer Depth Compression

 This mapping is almost linear close to eye

 Non-linear further from eye, approaches asymptote

 Also limited number of bits

 Thus, two z values close to far plane may map to
same pseudodepth: Errors!!

Mapped z

-Pz

1

-1

N

F

Pz
baPz




NF
NFa




NF
FNb


 2

Actual z

 Render polygons farthest to nearest

 Similar to painter layers oil paint

Painter’s HSR Algorithm

Viewer sees B behind A Render B then A

Depth Sort

 Requires sorting polygons (based on depth)

 O(n log n) complexity to sort n polygon depths

 Not every polygon is clearly in front or behind other
polygons

Polygons sorted by

distance from COP

Easy Cases

 Case a: A lies behind all polygons

 Case b: Polygons overlap in z but not in x or y

Hard Cases

Overlap in (x,y) and z ranges

cyclic overlap

penetration

Back Face Culling

 Back faces: faces of opaque object that are “pointing
away” from viewer

 Back face culling: do not draw back faces (saves
resources)

 How to detect back faces?

Back face

Back Face Culling

 Goal: Test if a face F is is backface

 How? Form vectors

 View vector, V

 Normal N to face F

N

V

N

Backface test: F is backface if N.V < 0 why??

Back Face Culling: Draw mesh front faces

void drawFrontFaces()

{

for(int f = 0;f < numFaces; f++)

{

if(isBackFace(f, ….) continue;

glDrawArrays(GL_POLYGON, 0, N);

}

if N.V < 0

View-Frustum Culling

o Goal: Remove objects outside view frustum

o Done by 3D clipping algorithm (e.g. Liang-Barsky)

Clipped

Not Clipped

Ray Tracing

 Ray tracing is another image space method

 Ray tracing: Cast a ray from eye through each
pixel into world.

 Ray tracing algorithm figures out: what object
seen in direction through given pixel?

Overview later

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition, Chapter 9

