Orthographic Projection

- How? Draw parallel lines from each object vertex
- The projection center is at infinite
- In short, use (x,y) coordinates, just drop z coordinates
Perspective Projection

- After setting view volume, then projection transformation
- Projection?
 - **Classic:** Converts 3D object to corresponding 2D on screen
 - How? Draw line from object to projection center
 - Calculate where each intersects projection plane
The Problem with Classic Projection

- Keeps \((x,y)\) coordinates for drawing, drops \(z\)
- We may need \(z\). Why?

\[
\begin{align*}
x_p &= x \\
y_p &= y \\
z_p &= 0
\end{align*}
\]

Classic Projection Loses \(z\) value
Normalization: Keeps z Value

- Most graphics systems use *view normalization*
- **Normalization:** convert all other projection types to orthogonal projections with the *default view volume*
Parallel Projection

- **normalization** \Rightarrow find 4x4 matrix to transform **user-specified view volume** to **canonical view volume (cube)**

$\text{glOrtho}(\text{left}, \text{right}, \text{bottom}, \text{top}, \text{near}, \text{far})$
Parallel Projection: Ortho

- Parallel projection: 2 parts
 1. **Translation**: centers view volume at origin
Parallel Projection: Ortho

2. **Scaling:** reduces user-selected cuboid to canonical cube (dimension 2, centered at origin)
Parallel Projection: Ortho

- Translation lines up midpoints: E.g. midpoint of $x = (\text{right} + \text{left})/2$
- Thus translation factors:

 $$-(\text{right} + \text{left})/2, \quad -(\text{top} + \text{bottom})/2, \quad -(\text{far}+\text{near})/2$$
- Translation matrix:

\[
\begin{pmatrix}
1 & 0 & 0 & -(\text{right} + \text{left})/2 \\
0 & 1 & 0 & -(\text{top} + \text{bottom})/2 \\
0 & 0 & 1 & -(\text{far} + \text{near})/2 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Parallel Projection: Ortho

- Scaling factor: ratio of ortho view volume to cube dimensions
- Scaling factors: \(\frac{2}{\text{right} - \text{left)}}, \frac{2}{\text{top} - \text{bottom)}, \frac{2}{\text{far} - \text{near}} \)
- Scaling Matrix M2:

\[
\begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Parallel Projection: Ortho

Concatenating **Translation** x **Scaling**, we get Ortho Projection matrix

\[
P = ST = \begin{bmatrix}
\frac{2}{right-left} & 0 & 0 & -\frac{right-left}{2} \\
0 & \frac{2}{top-bottom} & 0 & -\frac{top+bottom}{2} \\
0 & 0 & \frac{2}{far-near} & -\frac{far+near}{2} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Final Ortho Projection

- Set \(z = 0 \)
- Equivalent to the homogeneous coordinate transformation

\[
M_{\text{orth}} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Hence, general orthogonal projection in 4D is

\[
P = M_{\text{orth}} \cdot ST
\]
References