Computer Graphics (CS 543)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Rasterization

- Rasterization generates set of **fragments**
- Implemented by graphics hardware
- Rasterization algorithms for primitives (e.g., lines, circles, triangles, polygons)

Rasterization: Determine Pixels (fragments) each primitive covers
Line drawing algorithm

- Programmer specifies \((x,y)\) of end pixels
- Need algorithm to determine pixels on line path

Line: \((3,2) \rightarrow (9,6)\)

Which intermediate pixels to turn on?
Line drawing algorithm

- Pixel \((x, y)\) values constrained to integer values
- Computed intermediate values may be floats
- Rounding may be required. E.g. \((10.48, 20.51)\) rounded to \((10, 21)\)
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies

![Diagram](image)
Line Drawing Algorithm

- **Slope-intercept line equation**
 - $y = mx + b$
 - Given 2 end points $(x_0, y_0), (x_1, y_1)$, how to compute m and b?

\[
m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0} \quad y_0 = m \times x_0 + b \Rightarrow b = y_0 - m \times x_0
\]
Line Drawing Algorithm

- Numerical example of finding slope m:
 - $(Ax, Ay) = (23, 41), (Bx, By) = (125, 96)$

\[
m = \frac{By - Ay}{Bx - Ax} = \frac{96 - 41}{125 - 23} = \frac{55}{102} = 0.5392
\]
Digital Differential Analyzer (DDA): Line Drawing Algorithm

Consider slope of line, \(m \):

- Step through line, starting at \((x_0, y_0)\)
- **Case a: \((m < 1)\)** \(x \) incrementing faster
 - Step in \(x = 1 \) increments, compute \(y \) (a fraction) and round
- **Case b: \((m > 1)\)** \(y \) incrementing faster
 - Step in \(y = 1 \) increments, compute \(x \) (a fraction) and round
DDA Line Drawing Algorithm (Case a: \(m < 1 \))

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{y_{k+1} - y_k}{1}
\]

\[\Rightarrow y_{k+1} = y_k + m\]

Example, if first end point is \((0,0)\)

Example, if \(m = 0.2 \)

Step 1: \(x = 1, y = 0.2 \) => shade \((1,0)\)

Step 2: \(x = 2, y = 0.4 \) => shade \((2,1)\)

Step 3: \(x = 3, y = 0.6 \) => shade \((3,1)\)

... etc
DDA Line Drawing Algorithm (Case b: \(m > 1\))

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{1}{x_{k+1} - x_k}
\]

\[
\Rightarrow x_{k+1} = x_k + \frac{1}{m}
\]

Example, if first end point is \((0,0)\)

if \(1/m = 0.2\)

Step 1: \(y = 1, x = 0.2 \Rightarrow \text{shade (0,1)}\)

Step 2: \(y = 2, x = 0.4 \Rightarrow \text{shade (0, 2)}\)

Step 3: \(y = 3, x = 0.6 \Rightarrow \text{shade (1, 3)}\)

... etc
compute \(m \);
if \(m < 1 \):
{
 float \(y = y_0 \); \quad // \text{initial value}
 for(int \(x = x_0; \quad x \leq x_1; \quad x++, \ y += m \))
 setPixel(\(x, \ \text{round}(y) \));
}
else \quad // \(m > 1 \)
{
 float \(x = x_0 \); \quad // \text{initial value}
 for(int \(y = y_0; \quad y \leq y_1; \quad y++, \ x += 1/m \))
 setPixel(\(\text{round}(x), \ y \));
}

- \textbf{Note:} \texttt{setPixel(x, y)} writes current color into pixel in column \(x \) and row \(y \) in frame buffer
Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
 - Not very efficient
 - Round operation is expensive
- Optimized algorithms typically used.
 - Integer DDA
 - E.g. Bresenham algorithm
- Bresenham algorithm
 - Incremental algorithm: current value uses previous value
 - Integers only: avoid floating point arithmetic
 - Several versions of algorithm: we’ll describe midpoint version of algorithm
Bresenham’s Line-Drawing Algorithm

- **Problem**: Given endpoints \((Ax, Ay)\) and \((Bx, By)\) of line, determine intervening pixels.
- First make two simplifying assumptions (remove later):
 - \((Ax < Bx)\) and
 - \((0 < m < 1)\)
- Define
 - Width \(W = Bx - Ax\)
 - Height \(H = By - Ay\)
Bresenham’s Line-Drawing Algorithm

- Based on assumptions $(Ax < Bx)$ and $(0 < m < 1)$
 - W, H are +ve
 - $H < W$
- Increment x by +1, y incr by +1 or stays same
- Midpoint algorithm determines which happens
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x + 1, y + ½) \)

Build equation of actual line, compare to midpoint

Case a: If midpoint (red dot) is below line, Shade upper pixel, \((x + 1, y + 1)\)

Case b: If midpoint (red dot) is above line, Shade lower pixel, \((x + 1, y)\)
Build Equation of the Line

- Using similar triangles:
 \[
 \frac{y - Ay}{x - Ax} = \frac{H}{W}
 \]
 \[H(x - Ax) = W(y - Ay)
 -W(y - Ay) + H(x - Ax) = 0
 \]

- Above is equation of line from \((Ax, Ay)\) to \((Bx, By)\)
- Thus, any point \((x,y)\) that lies on ideal line makes \(eqn = 0\)
- Double expression (to avoid floats later), and call it \(F(x,y)\)
 \[
 F(x,y) = -2W(y - Ay) + 2H(x - Ax)
 \]
Bresenham’s Line-Drawing Algorithm

- So, \(F(x,y) = -2W(y - Ay) + 2H(x - Ax) \)

- Algorithm, If:
 - \(F(x, y) < 0 \), \((x, y)\) above line
 - \(F(x, y) > 0 \), \((x, y)\) below line

- **Hint:** \(F(x, y) = 0 \) is on line

- Increase \(y \) keeping \(x \) constant, \(F(x, y) \) becomes more negative
Bresenham’s Line-Drawing Algorithm

- **Example:** to find line segment between (3, 7) and (9, 11)

 \[F(x,y) = -2W(y - Ay) + 2H(x - Ax) \]
 \[= (-12)(y - 7) + (8)(x - 3) \]

- For points on line. E.g. \((7, 29/3)\), \(F(x, y) = 0\)
- \(A = (4, 4)\) lies below line since \(F = 44\)
- \(B = (5, 9)\) lies above line since \(F = -8\)
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint $M(M_x, M_y) = (x_0 + 1, y_0 + \frac{1}{2})$

Case a: If M below actual line $F(M_x, M_y) < 0$ shade upper pixel $(x + 1, y + 1)$

Case b: If M above actual line $F(M_x, M_y) > 0$ shade lower pixel $(x + 1, y)$
Can compute $F(x,y)$ incrementally

Initially, midpoint $M = (Ax + 1, Ay + \frac{1}{2})$

$$F(M_x, M_y) = -2W(y - Ay) + 2H(x - Ax)$$

i.e. $F(Ax + 1, Ay + \frac{1}{2}) = 2H - W$

Can compute $F(x,y)$ for next midpoint incrementally

If we increment to $(x + 1, y)$, compute new $F(M_x, M_y)$

$$F(M_x, M_y) += 2H$$

i.e. $F(Ax + 2, Ay + \frac{1}{2})$

$$- F(Ax + 1, Ay + \frac{1}{2})$$

$$= 2H$$
Can compute $F(x,y)$ incrementally

If we increment to $(x+1, y+1)$

$$F(Mx, My) += 2(H - W)$$

i.e. $F(Ax + 2, Ay + 3/2) - F(Ax + 1, Ay + 1/2) = 2(H - W)$
Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)
{ // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x − a.x, H = b.y − a.y;
 int F = 2 * H − W; // current error term
 for(int x = a.x; x <= b.x; x++)
 {
 setpixel at (x, y); // to desired color value
 if F < 0 // y stays same
 F = F + 2H;
 else{
 Y++, F = F + 2(H − W) // increment y
 }
 }
}

• Recall: F is equation of line
Bresenham’s Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions $0 < m < 1$ and $Ax < Bx$

- Can add code to remove restrictions
 - When $Ax > Bx$ (swap and draw)
 - Lines having $m > 1$ (interchange x with y)
 - Lines with $m < 0$ (step $x++$, decrement y not incr)
 - Horizontal and vertical lines (pretest $a.x = b.x$ and skip tests)
References