Computer Graphics (CS 543)
Lecture 11 (Part 1): Sphere Mapping, Normal Maps, Parametrization

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Sphere Environment Map

- Cube can be replaced by a sphere (sphere map)
Sphere Mapping

- Original environmental mapping technique
- Proposed by Blinn and Newell
- Uses lines of longitude and latitude to map parametric variables to texture coordinates
- OpenGL supports sphere mapping
- Requires a circular texture map equivalent to an image taken with a fisheye lens
Sphere Map

- A sphere map is basically a photograph of a reflective sphere in an environment

Paul DeBevec, www.debevec.org
Sphere map

- example

Sphere map (texture) Sphere map applied on torus
Capturing a Sphere Map
Normal Mapping

- Store normals in texture
- Very useful for making low-resolution geometry look like it’s much more detailed
Hot Research Topic: Parametrization

- The concept is very simple: define a mapping from the surface to the plane

For each triangle in the model establish a corresponding region in the phototexture
Parametrization in Practice

- Texture creation and parametrization is an art form
- Option: Unfold the surface
Parametrization in Practice

- Option: Create a Texture Atlas
- Break large mesh into smaller pieces
Light Maps

- Good shadows are complicated and expensive
- If lighting and objects will not change, neither are the shadows
- Can “bake” the shadows into a texture map as a preprocess step (called lightmap)
- During shading, lightmap values are multiplied into resulting pixel
Light Maps

DIFFUSE

X

LIGHTMAP

DIFFUSE x LIGHTMAP
Specular Mapping

- Use a greyscale texture as a multiplier for the specular component
Alpha Mapping

- Represent the alpha channel with a texture
- Can give complex outlines, used for plants

Render Bush on 1 polygon

Render Bush on polygon rotated 90 degrees
Bump mapping

- by Blinn in 1978
- Inexpensive way of simulating wrinkles and bumps on geometry
 - Too expensive to model these geometrically
- Instead let a texture modify the normal at each pixel, and then use this normal to compute lighting

\[\text{geometry} + \text{Bump map} \quad \text{Stores heights: can derive normals} = \text{Bump mapped geometry} \]
Bump mapping: examples
Bump Mapping Vs Normal Mapping

- **Bump mapping**
 - (Normals $\mathbf{n} = (n_x, n_y, n_z)$ stored as *distortion of face orientation*).
 - Same bump map can be tiled/repeated and reused for many faces)

- **Normal mapping**
 - Coordinates of normal (relative to tangent space) are encoded in color channels.
 - Normals stored include face orientation + plus distortion.)
Tangent Space Vectors

- Normals stored in local coordinate frame
- Need Tangent, normal and bi-tangent vectors
Displacement Mapping

- Uses a map to displace the surface at each position
- Offsets the position per pixel or per vertex
 - Offsetting per vertex is easy in vertex shader
 - Offsetting per pixel is architecturally hard
High Dynamic Range

- Sun’s brightness is about 60,000 lumens
- Dark areas of earth has brightness of 0 lumens
- Basically, world around us has range of 0 – 60,000 lumens *(High Dynamic Range)*
- However, monitor has ranges of colors between 0 – 255 *(Low Dynamic Range)*
- New file formats have been created for HDR images (wider ranges). *(E.g. OpenEXR file format)*
High Dynamic Range

- Some scenes contain **very bright + very dark** areas
- Using uniform scaling factor to map actual intensity to displayed pixel intensity means:
 - Either some areas are unexposed, or
 - Some areas of picture are overexposed
Tone Mapping

- Technique for scaling intensities in real world images (e.g. HDR images) to fit in displayable range
- Try to capture feeling of real scene: **non-trivial**
- **Example:** If coming out of dark tunnel, lights should seem bright
- **General idea:** apply different scaling factors to different parts of the image
Tone Mapping

Figure 10. Scene from Lost Coast at Varying Exposure Levels
Types of Tone Mapping Operators

- **Global**: Use same scaling factor for all pixels
- **Local**: Use different scaling factor for different parts of image
- **Time-dependent**: Scaling factor changes over time
- **Time independent**: Scaling factor does NOT change over time
- Real-time rendering usually does **NOT** implement local operators due to their complexity
Simple (Global) Tone Mapping Methods

Mapping to mean value

Division by maximum

Clipping on value 1

Interval mapping (interactive calibration)

Exponential mapping
Motion Blur

- Motion blur caused by exposing film to moving objects
- Motion blur: Blurring of samples taken over time (temporal)
- Makes fast moving scenes appear less jerky
- 30 fps + motion blur better than 60 fps + no motion blur
Motion Blur

- Basic idea is to average series of images over time
- Move object to set of positions occupied in a frame, blend resulting images together
- Can blur moving average of frames. E.g. blur 8 images
- **Velocity buffer:** blur in screen space using velocity of objects
Depth of Field

- We can simulate a real camera
- In photographs, a range of pixels in focus
- Pixels outside this range are out of focus
- This effect is known as **Depth of field**
Lens Flare and Bloom

- Caused by lens of eye/camera when directed at light
- Halo – refraction of light by lens
- Ciliary Corona – Density fluctuations of lens
- Bloom – Scattering in lens, glow around light

Halo, Bloom, Ciliary Corona – top to bottom
Lens Flare and Bloom

- Use set of textures for glare effects
- Each texture is bill boarded
- Alpha map – how much to blend
- Can be given colors for corona
- Overlap all of them!
- Animate – create sparkle
Reference

- Tomas Akenine-Moller, Eric Haines and Naty Hoffman, Real Time Rendering