
Computer Graphics (CS 543)
Lecture 12b: Rasterization: Line

Drawing

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Rasterization

 Rasterization generates set of fragments

 Implemented by graphics hardware

 Rasterization algorithms for primitives (e.g lines,
circles, triangles, polygons)

Rasterization: Determine Pixels

(fragments) each primitive covers

Fragments

Line drawing algorithm

 Programmer specifies (x,y) of end pixels

 Need algorithm to determine pixels on line path

0 1 2 3 4 5 6 7 8 9 10 11 12

8
7
6
5
4
3
2
1

Line: (3,2) -> (9,6)

? Which intermediate
pixels to turn on?

(3,2)

(9,6)

Line drawing algorithm

 Pixel (x,y) values constrained to integer values

 Computed intermediate values may be floats

 Rounding may be required. E.g. (10.48, 20.51) rounded to
(10, 21)

 Rounded pixel value is off actual line path (jaggy!!)

 Sloped lines end up having jaggies

 Vertical, horizontal lines, no jaggies

Line Drawing Algorithm

 Slope-intercept line equation

 y = mx + b

 Given 2 end points (x0,y0), (x1, y1), how to
compute m and b?

(x0,y0)

(x1,y1)

dx

dy

01

01

xx

yy

dx

dy
m

0*0

0*0

xmyb

bxmy

Line Drawing Algorithm

 Numerical example of finding slope m:

 (Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

5392.0
102

55

23125

4196

AxBx

AyBy
m

(23,41)

(125,96)

dx

dy

Digital Differential Analyzer (DDA):
Line Drawing Algorithm

(x0,y0)

(x1,y1)

dx

dy

o Step through line, starting at (x0,y0)
o Case a: (m < 1) x incrementing faster

o Step in x=1 increments, compute y (a fraction) and round
o Case b: (m > 1) y incrementing faster

o Step in y=1 increments, compute x (a fraction) and round

m<1

m>1

m=1

Consider slope of line, m:

DDA Line Drawing Algorithm (Case a: m < 1)

(x0, y0)

x = x + 1 y = y + m

Illuminate pixel (x, round(y))

x = x + 1 y = y + m

Illuminate pixel (x, round(y))

…

Until x == x1

(x1,y1)

x = x0 y = y0

Illuminate pixel (x, round(y))

myy

yy

xx

yy

x

y
m

kk

kk

kk

kk

1

1

1

1

1

Example, if first end point is (0,0)
Example, if m = 0.2
Step 1: x = 1, y = 0.2 => shade (1,0)
Step 2: x = 2, y = 0.4 => shade (2, 0)
Step 3: x= 3, y = 0.6 => shade (3, 1)
… etc

DDA Line Drawing Algorithm (Case b: m > 1)

y = y + 1 x = x + 1/m

Illuminate pixel (round(x), y)

y = y + 1 x = x + 1 /m

Illuminate pixel (round(x), y)

…

Until y == y1

x = x0 y = y0

Illuminate pixel (round(x), y)

(x1,y1)

(x0,y0)

m
xx

xxxx

yy

x

y
m

kk

kkkk

kk

1

1

1

11

1

Example, if first end point is (0,0)
if 1/m = 0.2
Step 1: y = 1, x = 0.2 => shade (0,1)
Step 2: y = 2, x = 0.4 => shade (0, 2)
Step 3: y= 3, x = 0.6 => shade (1, 3)
… etc

DDA Line Drawing Algorithm Pseudocode

compute m;

if m < 1:

{

float y = y0; // initial value

for(int x = x0; x <= x1; x++, y += m)

setPixel(x, round(y));

}

else // m > 1

{

float x = x0; // initial value

for(int y = y0; y <= y1; y++, x += 1/m)

setPixel(round(x), y);

}

 Note: setPixel(x, y) writes current color into pixel (x,y) in frame buffer

Line Drawing Algorithm Drawbacks

 DDA is the simplest line drawing algorithm

 Not very efficient

 Round operation is expensive

 Optimized algorithms typically used.

 Integer DDA

 E.g.Bresenham algorithm

 Bresenham algorithm

 Incremental algorithm: current value uses previous value

 Integers only: avoid floating point arithmetic

 Several versions of algorithm: we’ll describe midpoint
version of algorithm

Bresenham’s Line-Drawing Algorithm
Ref: Computer Graphics using OpenGL (3rd edition) by F.S. Hill and Kelley

 Problem: Given endpoints (Ax, Ay) and (Bx, By) of line,
determine intervening pixels

 First make two simplifying assumptions (remove later):

 (Ax < Bx) and

 (0 < m < 1)

 Define

 Width W = Bx – Ax

 Height H = By - Ay

(Bx,By)

(Ax,Ay)

H

W

Bresenham’s Line-Drawing Algorithm

 Based on assumptions (Ax < Bx) and (0 < m < 1)

 W, H are +ve

 H < W

 Increment x by +1, y incr by +1 or stays same

 Midpoint algorithm determines which happens

(Bx,By)

(Ax,Ay)

H

W

Bresenham’s Line-Drawing Algorithm

(x0, y0)

Build equation of actual line, compare to midpoint

(x1,y1)

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = (x + 1, y + ½)

M(Mx,My)

Case a: If line is above midpoint (red dot)
Shade upper pixel, (x + 1, y + 1)

Case b: If line is below midpoint (red dot)

Shade lower pixel, (x + 1, y)

(x1,y1)

Build Equation of the Line

 Using similar triangles:

H(x – Ax) = W(y – Ay)

-W(y – Ay) + H(x – Ax) = 0

 Above is equation of line from (Ax, Ay) to (Bx, By)

 Thus, any point (x,y) that lies on ideal line makes eqn = 0

 Double expression (to avoid floats later), and call it F(x,y)

F(x,y) = -2W(y – Ay) + 2H(x – Ax)

W

H

Axx

Ayy

(Bx,By)

(Ax,Ay)

(x,y) H

W

Bresenham’s Line-Drawing Algorithm

 So, F(x,y) = -2W(y – Ay) + 2H(x – Ax)

 Algorithm, If:

 F(x, y) < 0, (x, y) above line

 F(x, y) > 0, (x, y) below line

 Hint: F(x, y) = 0 is on line

 Increase y keeping x constant, F(x, y) becomes more
negative

Bresenham’s Line-Drawing Algorithm

 Example: to find line segment between (3, 7) and (9, 11)

F(x,y) = -2W(y – Ay) + 2H(x – Ax)

= (-12)(y – 7) + (8)(x – 3)

 For points on line. E.g. (7, 29/3), F(x, y) = 0

 A = (4, 4) lies below line since F = 44

 B = (5, 9) lies above line since F = -8

(5,9)

(4,4)

Bresenham’s Line-Drawing Algorithm

(x0, y0)

Case a: If M below actual line
F(Mx, My) > 0
shade upper pixel (x + 1, y + 1)

(x1,y1)

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = (x0 + 1, Y0 + ½)

M(Mx,My)

Case b: If M above actual line
F(Mx,My) < 0
shade lower pixel (x + 1, y)

(x1,y1)

Can compute F(x,y) incrementally

Initially, midpoint M = (Ax + 1, Ay + ½)

F(Mx, My) = -2W(y – Ay) + 2H(x – Ax)

i.e. F(Ax + 1, Ay + ½) = 2H – W

Can compute F(x,y) for next midpoint incrementally

If we increment to (x + 1, y), compute new F(Mx,My)

F(Mx, My) += 2H

i.e. F(Ax + 2, Ay + ½)

- F(Ax + 1, Ay + ½)

= 2H

(Ax + 1, Ay + ½)

(Ax + 2, Ay + ½)

Can compute F(x,y) incrementally

If we increment to (x +1, y + 1)

F(Mx, My) += 2(H – W)

i.e. F(Ax + 2, Ay + 3/2) - F(Ax + 1, Ay + ½) = 2(H – W)

(Ax + 1, Ay + ½)

(Ax + 2, Ay + 3/2)

Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)

{ // restriction: a.x < b.x and 0 < H/W < 1

int y = a.y, W = b.x – a.x, H = b.y – a.y;

int F = 2 * H – W; // current error term

for(int x = a.x; x <= b.x; x++)

{

setpixel at (x, y); // to desired color value

if F < 0 // y stays same

F = F + 2H;

else{

Y++, F = F + 2(H – W) // increment y

}

}

}

 Recall: F is equation of line

Bresenham’s Line-Drawing Algorithm

 Final words: we developed algorithm with restrictions

0 < m < 1 and Ax < Bx

 Can add code to remove restrictions

 When Ax > Bx (swap and draw)

 Lines having m > 1 (interchange x with y)

 Lines with m < 0 (step x++, decrement y not incr)

 Horizontal and vertical lines (pretest a.x = b.x and skip
tests)

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition, Chapter 9

