Computer Graphics (CS 543)
Lecture 12b: Rasterization: Line Drawing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Rasterization

- Rasterization generates set of **fragments**
- Implemented by graphics hardware
- Rasterization algorithms for primitives (e.g., lines, circles, triangles, polygons)

Rasterization: Determine Pixels

(Fragments) each primitive covers
Line drawing algorithm

- Programmer specifies \((x,y)\) of end pixels
- Need algorithm to determine pixels on line path

Line: \((3,2) \rightarrow (9,6)\)

Which intermediate pixels to turn on?
Line drawing algorithm

- Pixel \((x,y)\) values constrained to integer values
- Computed intermediate values may be floats
- Rounding may be required. E.g. \((10.48, 20.51)\) rounded to \((10, 21)\)
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies
Line Drawing Algorithm

- Slope-intercept line equation
 - \(y = mx + b \)
 - Given 2 end points \((x_0, y_0), (x_1, y_1)\), how to compute \(m\) and \(b\)?

\[
m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0} \quad y_0 = mx_0 + b \quad \Rightarrow b = y_0 - mx_0
\]
Line Drawing Algorithm

- Numerical example of finding slope m:
 - $(A_x, A_y) = (23, 41), (B_x, B_y) = (125, 96)$

$$m = \frac{B_y - A_y}{B_x - A_x} = \frac{96 - 41}{125 - 23} = \frac{55}{102} = 0.5392$$
Digital Differential Analyzer (DDA): Line Drawing Algorithm

Consider slope of line, m:

- $m < 1$
 - Step in $x=1$ increments, compute y (a fraction) and round
- $m > 1$
 - Step in $y=1$ increments, compute x (a fraction) and round
- $m = 1$

- Step through line, starting at (x_0,y_0)
- **Case a:** $(m < 1)$ x incrementing faster
 - Step in $x=1$ increments, compute y (a fraction) and round
- **Case b:** $(m > 1)$ y incrementing faster
 - Step in $y=1$ increments, compute x (a fraction) and round
DDA Line Drawing Algorithm (Case a: m < 1)

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{y_{k+1} - y_k}{1}
\]

\[\Rightarrow y_{k+1} = y_k + m\]

Example, if first end point is (0,0)

Example, if \(m = 0.2 \)

Step 1: \(x = 1, y = 0.2 \) => shade (1,0)

Step 2: \(x = 2, y = 0.4 \) => shade (2,0)

Step 3: \(x = 3, y = 0.6 \) => shade (3,1)

... etc
DDA Line Drawing Algorithm (Case b: m > 1)

\[m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{1}{x_{k+1} - x_k} \]

\[\Rightarrow x_{k+1} = x_k + \frac{1}{m} \]

Example, if first end point is (0,0)
if 1/m = 0.2
Step 1: y = 1, x = 0.2 => shade (0,1)
Step 2: y = 2, x = 0.4 => shade (0, 2)
Step 3: y = 3, x = 0.6 => shade (1, 3)
... etc
DDA Line Drawing Algorithm Pseudocode

compute m;
if m < 1:
{
 float y = y0; // initial value
 for(int x = x0; x <= x1; x++, y += m)
 setPixel(x, round(y));
}
else // m > 1
{
 float x = x0; // initial value
 for(int y = y0; y <= y1; y++, x += 1/m)
 setPixel(round(x), y);
}

- **Note:** `setPixel(x, y)` writes current color into pixel (x,y) in frame buffer
Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
 - Not very efficient
 - Round operation is expensive
- Optimized algorithms typically used.
 - Integer DDA
 - E.g. Bresenham algorithm
- Bresenham algorithm
 - Incremental algorithm: current value uses previous value
 - Integers only: avoid floating point arithmetic
 - Several versions of algorithm: we’ll describe midpoint version of algorithm
Problem: Given endpoints \((Ax, Ay)\) and \((Bx, By)\) of line, determine intervening pixels

First make two simplifying assumptions (remove later):

- \((Ax < Bx)\) and
- \((0 < m < 1)\)

Define

- **Width** \(W = Bx - Ax\)
- **Height** \(H = By - Ay\)
Bresenham’s Line-Drawing Algorithm

- Based on assumptions $(Ax < Bx)$ and $(0 < m < 1)$
 - W, H are $+ve$
 - $H < W$
- Increment x by $+1$, y incr by $+1$ or stays same
- Midpoint algorithm determines which happens
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x + 1, y + \frac{1}{2}) \)

Build equation of actual line, compare to midpoint

Case a: If line is above midpoint (red dot)
Shade upper pixel, \((x + 1, y + 1)\)

Case b: If line is below midpoint (red dot)
Shade lower pixel, \((x + 1, y)\)
Build Equation of the Line

● Using similar triangles:

\[
\frac{y - Ay}{x - Ax} = \frac{H}{W}
\]

\[H(x - Ax) = W(y - Ay)\]
\[-W(y - Ay) + H(x - Ax) = 0\]

● Above is equation of line from (Ax, Ay) to (Bx, By)
● Thus, any point (x,y) that lies on ideal line makes eqn = 0
● Double expression (to avoid floats later), and call it F(x,y)

\[F(x,y) = -2W(y - Ay) + 2H(x - Ax)\]
Bresenham’s Line-Drawing Algorithm

- So, \(F(x, y) = -2W(y - Ay) + 2H(x - Ax) \)

- Algorithm, If:
 - \(F(x, y) < 0 \), \((x, y)\) above line
 - \(F(x, y) > 0 \), \((x, y)\) below line

- **Hint:** \(F(x, y) = 0 \) is on line
- Increase \(y \) keeping \(x \) constant, \(F(x, y) \) becomes more negative
Bresenham’s Line-Drawing Algorithm

- **Example:** to find line segment between (3, 7) and (9, 11)

 \[
 F(x,y) = -2W(y - Ay) + 2H(x - Ax)
 \]
 \[
 = (-12)(y - 7) + (8)(x - 3)
 \]

- For points on line. E.g. \((7, 29/3)\), \(F(x, y) = 0\)
- \(A = (4, 4)\) lies below line since \(F = 44\)
- \(B = (5, 9)\) lies above line since \(F = -8\)
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x_0 + 1, y_0 + \frac{1}{2}) \)

Case a: If \(M \) below actual line

\[F(M_x, M_y) > 0 \]

shade upper pixel \((x + 1, y + 1)\)

Case b: If \(M \) above actual line

\[F(M_x, M_y) < 0 \]

shade lower pixel \((x + 1, y)\)
Can compute $F(x,y)$ incrementally

Initially, midpoint $M = (Ax + 1, Ay + \frac{1}{2})$

$$F(M_x, M_y) = -2W(y - Ay) + 2H(x - Ax)$$

i.e. $F(Ax + 1, Ay + \frac{1}{2}) = 2H - W$

Can compute $F(x,y)$ for next midpoint incrementally

If we increment to $(x + 1, y)$, compute new $F(M_x,M_y)$

$$F(M_x, M_y) += 2H$$

i.e. $F(Ax + 2, Ay + \frac{1}{2})$

- $F(Ax + 1, Ay + \frac{1}{2})$
 $$= 2H$$
Can compute $F(x,y)$ incrementally

If we increment to $(x +1, y + 1)$

$$F(Mx, My) += 2(H - W)$$

i.e. $F(Ax + 2, Ay + 3/2) - F(Ax + 1, Ay + ½) = 2(H - W)$
Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)
{ // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x – a.x, H = b.y – a.y;
 int F = 2 * H – W; // current error term
 for(int x = a.x; x <= b.x; x++)
 {
 setpixel at (x, y); // to desired color value
 if F < 0 // y stays same
 F = F + 2H;
 else{
 Y++, F = F + 2(H – W) // increment y
 }
 }
}

 Recall: F is equation of line
Bresenham’s Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions
 \[0 < m < 1 \text{ and } A_x < B_x \]

- Can add code to remove restrictions
 - When \(A_x > B_x \) (swap and draw)
 - Lines having \(m > 1 \) (interchange \(x \) with \(y \))
 - Lines with \(m < 0 \) (step \(x++ \), decrement \(y \) not incr)
 - Horizontal and vertical lines (pretest \(a.x = b.x \) and skip tests)
References