
Computer Graphics (CS 543)
Lecture 11c: 2D Clipping

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

OpenGL Stages

 After projection, several stages before objects drawn to screen

 These stages are NOT programmable

Transform Projection
Primitive

Assembly Clipping

Rasterization
Hidden

Surface

Removal

Vertex shader: programmable In hardware: NOT programmable

Hardware Stage: Primitive Assembly

 Up till now: Transformations and projections applied to
vertices individually

 Primitive assembly: After transforms, projections,
individual vertices grouped back into primitives

 E.g. v6, v7 and v8 grouped back into triangle

v1

v2

v6

v6

v3

v7
v8

v4

v5

Hardware Stage: Clipping

 After primitive assembly, subsequent operations are
per-primitive

 Clipping: Remove primitives (lines, polygons, text,
curves) outside view frustum (canonical view volume)

Clipping lines Clipping polygons

Rasterization

 Determine which pixels that primitives (shapes)
map to
 Fragment generation

 Rasterization or scan conversion

Hidden Surface Removal

 Some tasks deferred until fragment processing

Hidden Surface Removal
Antialiasing

Transformation

Projection

Hidden surface Removal

Antialiasing

Clipping

 2D and 3D clipping algorithms
 2D against clipping window

 3D against clipping volume

 2D clipping
 Lines (e.g. dino.dat)

 Polygons

 Curves

 Text

Clipping 2D Line Segments

 Brute force approach: compute intersections
with all sides of clipping window

 Inefficient: one division per intersection

2D Clipping

 Better Idea: eliminate as many cases as possible
without computing intersections

 Cohen-Sutherland Clipping algorithm

Completely out

(no intersection)Completely in

(no intersection)

Goal: Develop simple tests to eliminate

lines like CD or AB (no intersection)

Clipping Points
Ref: Computer Graphics using OpenGL, Hill and Kelley, 3rd edition

(xmin, ymin)

(xmax, ymax)

Determine whether a point (x,y) is
inside or outside of the world
window?

If (xmin <= x <= xmax)

and (ymin <= y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

3 cases:
Case 1: All of line in

Case 2: All of line out

Case 3: Part in, part out

(xmin, ymin)

(xmax, ymax)

1

2

3

Clipping Lines: Trivial Accept

Case 1: All of line in
Test line endpoints:

Note: simply comparing x,y values of
endpoints to x,y values of rectangle

Result: trivially accept.
Draw line in completely

(Xmin, Ymin)

(Xmax, Ymax)

p1

p2

Xmin <= P1.x, P2.x <= Xmax and
Ymin <= P1.y, P2.y <= Ymax

Clipping Lines: Trivial Reject

Case 2: All of line out
Test line endpoints:

Note: simply comparing x,y values of
endpoints to x,y values of
rectangle

Result: trivially reject.
Don’t draw line in

p1

p2

 p1.x, p2.x <= Xmin OR
 p1.x, p2.x >= Xmax OR
 p1.y, p2.y <= ymin OR
 p1.y, p2.y >= ymax

Clipping Lines: Non-Trivial Cases

Case 3: Part in, part out

Two variations:
One point in, other out
Both points out, but part of line cuts

through viewport

Need to find inside segments

Use similar triangles to figure out length
of inside segments

e

p2

p1

d

delx

dely

delx

e

dely

d


Clipping Lines: Calculation example

If chopping window has
(left, right, bottom, top) = (30, 220, 50, 240),
what happens when the following lines are
chopped?

(a) p1 = (40,140), p2 = (100, 200)

(b) p1 = (20,10), p2 = (20, 200)

(c) p1 = (100,180), p2 = (200, 250)

e

p2

p1

d

delx

dely

delx

e

dely

d


Cohen-Sutherland pseudocode (Hill)

int clipSegment(Point2& p1, Point2& p2, RealRect W)

{

do{

if(trivial accept) return 1; // whole line survives

if(trivial reject) return 0; // no portion survives

// now chop

if(p1 is outside)

// find surviving segment

{

if(p1 is to the left) chop against left edge

else if(p1 is to the right) chop against right edge

else if(p1 is below) chop against the bottom edge

else if(p1 is above) chop against the top edge

}

Cohen-Sutherland pseudocode (Hill)

else // p2 is outside

// find surviving segment

{

if(p2 is to the left) chop against left edge

else if(p2 is to right) chop against right edge

else if(p2 is below) chop against the bottom edge

else if(p2 is above) chop against the top edge

}

}while(1);

}

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition

