
Computer Graphics (CS 543)
Lecture 11b: Tone Mapping, Noise &

Procedural Textures

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Tone Mapping

High Dynamic Range

 Sun’s brightness is about 60,000 lumens

 Dark areas of earth has brightness of 0 lumens

 Basically, world around us has range of 0 – 60,000 lumens
(High Dynamic Range)

 However, monitor has ranges of colors between 0 – 255 (Low
Dynamic Range)

 New file formats have been created for HDR images (wider
ranges). (E.g. OpenEXR file format)

HDR

0 Lumens

60,000 Lumens

LDR

(Range: 256)

High Dynamic Range

 Some scenes contain very bright + very dark areas

 Using uniform scaling factor to map actual intensity to
displayed pixel intensity means:
 Either some areas are unexposed, or

 Some areas of picture are overexposed

Under exposure Over exposure

Tone Mapping

 Technique for scaling intensities in real world images (e.g HDR
images) to fit in displayable range

 Try to capture feeling of real scene: non-trivial

 Example: If coming out of dark tunnel, lights should seem
bright

 General idea: apply different scaling factors to diffferent
parts of the image

HDR

(Range: 60,000) LDR

(Range: 256)

Tone

Mapping

Tone Mapping

Types of Tone Mapping Operators

 Global: Use same scaling factor for all pixels

 Local: Use different scaling factor for different parts
of image

 Time-dependent: Scaling factor changes over time

 Time independent: Scaling factor does NOT change
over time

 Real-time rendering usually does NOT implement
local operators due to their complexity

Simple (Global) Tone Mapping Methods

Motion Blur

 Motion blur caused by exposing film to moving objects

 Motion blur: Blurring of samples taken over time (temporal)

 Makes fast moving scenes appear less jerky

 30 fps + motion blur better than 60 fps + no motion blur

Motion Blur
 Basic idea is to average series of images over time

 Move object to set of positions occupied in a frame, blend
resulting images together

 Can blur moving average of frames. E.g blur 8 images

 Velocity buffer: blur in screen space using velocity of objects

Depth of Field

 We can simulate a real camera

 In photographs, a range of pixels in focus

 Pixels outside this range are out of focus

 This effect is known as Depth of field

Lens Flare and Bloom

 Caused by lens of eye/camera when directed at light

 Halo – refraction of light by lens

 Ciliary Corona – Density fluctuations of lens

 Bloom – Scattering in lens, glow around light

Halo, Bloom, Ciliary Corona – top to bottom

3D and Noise Textures

Solid 3D Texture
Ref: Computer Graphics using OpenGL (Third edition) by Hill and Kelley, pg 648-656

 Sometimes called 3D texture

 As if object is carved out of textured material. E.g. Wood,
marble

 Texture: Each (x,y,z) point maps to (r,g,b) color
 f(x,y,z) -> (r,g,b)

Checkerboard Texture

 Imagine cubes of alternating color, each of dimension (S.x,
S.y, S.z) placed next to each other

 A 3D texture for a checkerboard pattern can be written as:

jump(x, y, z) = [(int)(x/S.x) + (int)(y/S.y) + (int)(z/S.z))] % 2

 3D texture lookup returns color 1 if jump = 0 and color 2
if jump = 1

Wood Texture
 Grain in log of wood due to concentric rings varying color

 As distance from some axis increases, functions jumps back
and forth between 2 values

 This effect can be simulated with the modulo function

rings(r) = ((int) r) % 2

where

 Rings jumps between 0 and 1 as r increases from 0.

 The following texture jumps between D and D + A
simple_wood(x, y, z) = D + A * rings(r/M));

 Produces rings of thickness M that are concentric about z axis

22 yxr 

Wood Texture (Contd)

 Can wobble rings by adding component that varies azimuth θ
about the z axis

rings(r/M + Ksin(θ/N))

 To add a twist to the wobbling grain:

rings(r/M + Ksin(θ/N + Bz))

Marble

 Grain of marble is quite chaotic

 Marble can be simulated by function that
produces a “random value” at each (x,y,z)
point in space

 Imagine each (x,y,z) point assigned with a
random value. E.g. (2,2,1) = 0.7341

 Random values could be stored in massive
lookup table. Typically generated on the fly

Turbulence







M

k

k

k
zyxsnoisezyxsturb

0

),,,,2(
2

1

2

1
),,,(

Marble Texture

 General idea:
 give the marble’s veins smoothly fluctuating behavior (e.g. in z direction)

 Perturb the veins using turb() function

 For instance, start with texture that is constant in x and y,
smoothly varying in z

marble(x, y, z) = undulate(sin(z));

 Above function is too regular

 Modulate sin() argument with

some turbulence

marble(x, y, z) = undulate(sin(z + A turb(s, x, y, z)));

Marble Texture (Contd)

marble(x, y, z) = undulate(sin(z + A turb(s, x, y, z)));

 Parameter s makes turbulence vary more or less rapidly at
different points

 Parameter A changes amount of perturbation

 Example: g  spline(sin(2 z  A turb(5,x,y,z)))

A = 1 A = 3 A = 6

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

 Real Time Rendering by Akenine-Moller, Haines and Hoffman

